Research articles

15. Wong, S.H., Low, S.H., and Hong, W. The 17-residue transmembrane domain of \(\beta \)-galactoside \(\alpha_2,6 \)-sialyltransferase is sufficient for Golgi retention. *J. Cell Biol.* (1992) 117, 245-258. (Identified one of the first few signals for Golgi targeting of sugar transferases)

20. Tang, B.L., Wong, S.H., Qi, X.L., Subramaniam, V.N., and Hong, W. Golgi localized \(\beta \)-galactoside \(\alpha_2,6 \)-sialyltransferase in transfected CHO cells is redistributed into the endoplasmic reticulum by BFA. *Eur. J. Cell Biol.* (1992) 59, 228-231.

(Identified one of the first few SNAREs of the Golgi apparatus)

44. Zhang, T., Wong, S.H., Tang, B.L., Xu, Y., Peter, F., and Hong, W. The mammalian protein (rbet1) homologous to yeast Bet1p is primarily associated with the pre-Golgi intermediate compartment and is involved in vesicular transport from the endoplasmic reticulum to the Golgi apparatus. *J. Cell Biol.* (1997) 139, 1157-1168. (Defined the function and mechanism of a novel mammalian SNARE)

73. Singh, P., Chan, S.W., Hong, W. RB is functionally distinct from its homologues in affecting glucocorticoid receptor mediated transcription and apoptosis *J. Biol. Chem.* (2001) 276, 13762-13770.

86. Loh, E., and Hong, W. Sec34 is involved in ER-Golgi transport in mammalian cells and exists in a complex(s) containing GTC-90 and IdlB. J. Biol. Chem. (2002) 277, 21955 321961. (Identified a novel protein complex called COG in regulating the Golgi apparatus)

158. Chan, S.W., Lim, C.J., Guo, K., Ng, C.P., Lee, I., Hunziker, W., Zeng, Q., and Hong, W. A role for TAZ in migration, invasion and tumorigenesis of breast cancer cells. Cancer Res. (2008) 68, 2592-2598. (Revealed that TAZ is likely a new oncogene for invasive breast cancer)

162. Chan, S.W., Lim, C.J., Loo, L.S., Chong, Y.F., Huang, C., and Hong, W. TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J. Biol. Chem. (2009) 284, 14347-14358. (Revealed that interaction with TEAD1-4 is important for TAZ to transform cells)

166. Liu, N. S., Loo, L.S., Loh, E., Seet, L.F. and Hong, W. Participation of Tom1L1 in EGF-stimulated endocytosis of EGF receptor. The EMBO J. (2009) 28, 3485-3499. (Showed that Tom1L1 is likely a regulated adaptor for EGF-stimulated endocytosis of EGF receptor) (Highlighted by A*STAR research)

172. Yan Shan Ong, Y.S., Tang, B.L., Loo, L.S., and Hong, W. p125A exists as part of the mammalian Sec13-Sec31 COPII subcomplex to facilitate ER-Golgi transport. *J. Cell Biol.* (2010) 190, 331-345. (Showed that p125 co-exists with Sec13-Sec31 as a complex to regulate COPII export from the ER) (Highlighted by A*STAR research)

177. Chan, S.W., Lim, C.J., Huang, C.X., Chong, Y.F., Gunaratne, H.J., Hogue, K.A., Blackstock, W.P., Harvey, K.F., and Hong, W. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. *Oncogene* (2011) 30, 600-610. (Showed that Wbp2 is a regulator of the Hippo pathway by acting as a positive factor for TAZ and YAP) (Highlighted by A*STAR research)

243. Chakraborty, S., Njah, K., Pobbati, A.V., Lim, Y.B., Raju, A., Lakshmanan, M., Lim, C.T., and Hong W. Agrin as a mechanotransduction signal regulating YAP through the Hippo Pathway. *Cell Reports* (2017) 18, 2464-2479. (Discovered the first link of Agrin to mechanotransduction; highlighted in Trends in Cancer)

Reviews, perspective and meeting reports

