Integration of Tensile-Strained Ge p-i-n Photodetector on Advanced CMOS Platform

J. Wang1,2, W. Y. Loh1*, H. Zang1,2, M.B. Yu1, K.T. Chua1, T. H. Loh1, J.D. Ye1, R. Yang1, X.L. Wang1, S. J. Lee2, B. J. Cho2, G Q. Lo1, and D. L. Kwong1

1Institute of Microelectronics, 11 Science Park Road, Singapore, 117685
2Silicon Nano Device Lab, ECE Dept., National University of Singapore, Singapore, 117576
*Corresponding Author: W. Y. Loh, (+65)-6770-5766, Email: lohwy@ime.a-star.edu.sg.

Abstract - Tensile-strained Ge photodetector is realized on Si-substrate using novel Si/SiGe compliant layer with two-step Ge-process. Monolithic integration of p-i-n detectors with low dark current (0.4 nA), responsivity (190 mA/W) and high speed (>5 GHz) on Ge-CMOS platform is demonstrated, with Ge pMOSFET showing 2X Si hole mobility.

I. INTRODUCTION

Ge-on-Si-substrate photodiodes have recently gained tremendous interest due to their application in low-cost Si-based OEIC for optical communications. Although the 4% lattice mismatch between Ge and Si makes the integration of Ge-devices into Si platform quite challenging, a two-step process has been proposed by Colace et al. accommodating thick flat Ge epilayers on Si [1]. Further improvements by Luan et al. demonstrate threading-dislocation free Ge mesas by combining selective area epitaxy and cyclic thermal annealing [2]. In this paper, high quality Ge grown by selective epitaxial growth on different sized (10-100 μm2) Si window without thermal annealing is presented. Ge-on-Si heterojunction p-i-n diodes fabricated using this method are characterized by AFM, micro-Raman and TEM with flat-surface (rms~0.59 nm), etch pit density ~6x10^10 cm⁻² and tensile-strain of up to 0.67%. The fabricated photodiode shows extended photoresponse covering the L-band with speed > 5 GHz. Using the same Ge-platform, high-speed Ge-CMOS has also been fabricated with high p-drive current of up ~2× universal Si hole mobility.

II. EXPERIMENT

Starting with (100) p-type Si (resistivity ~8-15Ωcm), PECVD oxide ~180nm was deposited, patterned and dry/wet etched to form various area (circular and square shape with area 10-1000 μm²) window for PIN photodetectors and transistors. The bottom of the mesa was then implanted with As/2.2x10¹³ cm⁻²/20 keV and annealed at 1000°C. Ultrathin Si seed (~10nm), Si₈₋₀₂Ge₀₂ (~25nm, 350-400°C) buffer, and (two-step) strain-relaxed Ge were sequentially deposited in a UHVCVD chamber. For the two-step Ge process [1], a low-temperature (400°C) LT-Ge seed (~10nm) was first deposited followed by high temperature HT-Ge (~150nm) deposition at 550-600°C and capped with 3nm tensile strained-Si for CMOS optimization. For compliant buffer development, some wafers incorporate SiGe buffer while other samples have Si/SiGe buffer which has better compliant effects [3]. After standard cleaning process, some wafers were separately deposited with 6nm HfO₂ by PVD sputtering and annealed in O₂ at 700°C. Transistors with gate length of L_g = ~0.5-10 μm were fabricated. All the samples were then implanted with a phosphorous/boron dose of 1x10¹⁵cm⁻² at 5keV at a tilt of 7° and thermally activated at 600°C for 10sec. Finally, ohmic contacts were formed by a metal stack of a thin layer of TaN (25nm) and a 0.75μm Al. Fig. 1 shows the schematic of the p-i-n detector and Ge CMOSFET fabricated on the same Ge platform on separate wafers.

Inset shows the TEM images of the selective epi grown (SEG) Ge on Si/SiGe buffer on Si (160nm). AFM shows a flat Ge surface with rms~0.59 nm for samples with Si/SiGe buffer and 1.06 nm for samples with SiGe buffer.

![Fig. 1 Schematics of fabricated lateral PD and MOSFET on tensile strained Ge-on-Si platform. Inset shows the surface roughness and TEM of SEG Ge on Si/SiGe buffer on Si substrates.](image)

III. RESULTS AND DISCUSSION

(a) Dark Currents in Ge-Photodiode

Current-voltage (I-V) measurement of Ge p+i-n photodiodes on Si/SiGe buffer for circular p-i-n of area 120 μm² shows very low leakage of 0.4 nA at -1V bias under room temperature (300K) as shown in Fig. 2(a) with ideality factor, n ~ 1.19. Dark current under reverse bias, shows relatively flat reverse saturation leakage up to -5V demonstrating good quality Ge with very little generation-recombination even at high field. The low voltage dependency of the reverse bias leakage suggests uniform defect states without dopant permeation into the intrinsic layer [5]. For high temperature operation, low
leakage is an important criterion due to temperature dependence of Ge bandgap and generation-recombination at defect sites. Our devices show good leakage even at high temperature. Dark current increases by a factor of 10 from 30°C to 90°C (3.5 nA at -1V) for a typical 120 μm² lateral Ge p-i-n photodetector. The results are comparable and lower than [5] and well below the 1 μA upper limit for high speed receiver application. Fig. 2(b) shows Arrhenius plot of the dark current $I/pT^{3/2}$ with activation energy of $E_a = 0.32$ eV which corresponds to roughly half of Ge direct bandgap (~ 0.66 eV). The results validate thermal generation and recombination of carriers in the intrinsic Ge layer rather than the underlying Si.

(b) Tensile strained Ge Responsivity

Using two-step Ge deposition at 335°C/700°C, tensile strained (0.25%) Ge has been previously demonstrated [6,7]. In our current work, a compliant Si/SiGe buffer coupled with the two-step Ge at 350°C/600°C has been used. Fig. 3(a) shows the micro-Raman spectroscopy using 514.5nm Ar⁺-laser in the $z(\bar{z},\bar{z})$ backscattering configuration. For samples with Si/SiGe buffer layer, the Raman peak shift by 2.6 cm⁻¹ compared to bulk Ge. The in-plane strain component can be calculated from $\Delta\omega = bE_{\text{z}}$ where $b = -415$ cm⁻¹ using the elastic and strain tensor constant from [8]. From Fig. 3(a), it can be observed that samples with SEG-Ge grown on Si/SiGe buffer layer experience an in-plane tensile strain of 0.63%. Our results for Si/SiGe buffer is significantly higher than [6,7] due to the underlying compliant micro-crystalline Si layer which is expected to have a even lower thermal coefficient of expansion (TCE) [10] compared to Si bulk and SiGe buffer which promote full relaxation of the Ge layer during epi-growth. Samples with SiGe buffer shows 0.12% strain, which matches the results of [6] considering the lower temperature used in our study. As a result of the enhanced tensile strain, the Ge direct bandgap, E_g will be reduced from 0.80eV to 0.76eV, corresponding to $\lambda = 1.62$ μm, resulting in efficient photon detection in the L-band (Fig. 3(b)). Fig. 4 shows the responsivity spectra of the lateral Ge p-i-n photo detector (120 μm²) under normal incidence illumination using laser diode with multi-mode fiber probe at $\lambda = 1.52$ to 1.62 μm. Samples with Si/SiGe buffer show wider photo-response spectral than those with SiGe buffer which could be attributed to the enhanced tensile strain. Fig. 4 inset shows the normalized photo-current (reference to 1520nm) under 0.1 mW laser illumination for samples with Si/SiGe
buffer ($\varepsilon = 0.63\%$) and those with SiGe buffer only ($\varepsilon = 0.12\%$). A wider spectral response for samples with Si/SiGe buffer is observed, well beyond 1580 nm with responsivity of -190 mA/W at 1.52 μm. The responsivity is reasonable considering the thickness of Ge (0.2 μm) and inherent mismatch between the multi-mode fiber and photo-diode aperture. In comparison, Colace et al. have obtained responsivity of 0.24 A/W at 1.32 μm [11] for 0.4 μm thick Ge.

(c) Photodetector speed

The temporal response of several square-shaped 13 \times 13 μm2 lateral detectors were measured using 1.55 μm pulsed fiber laser with optical pulse width of 80 fs. Devices were probed with microwave probes and measured with a 15 GHz sampling oscilloscope. DC voltage bias was coupled using a 26 GHz bias tee. Fig. 5 shows the pulsed response and the Fast-Fourier-Transform (FFT) over 1 ns duration for Ge p-i-n with Si/SiGe buffer and SiGe buffer. The 3-dB bandwidth is 5.2 GHz (Si/SiGe buffer) and 1.17 GHz (SiGe buffer) at -1 V and is limited by the electrode spacing of 1 μm between the n$^+$ and p$^+$ region and lack of de-embedding structure. Enhanced speed in Ge on Si/SiGe buffer correlate with higher tensile strain in the Ge layer and may also be related to better Ge quality as evidenced by lower surface roughness of samples with Si/SiGe buffer.

(d) Integration with Ge-CMOS platform

Using the Ge platform with Si/SiGe buffer, CMOS with HfO$_2$(60 Å)/TaN gate stack has been fabricated. To ensure process compatibility, high thermal processing is avoided, by usage of high-κ dielectrics/metal-gate with the thermal processing limited to 700 $^\circ$C, 30s for gate annealing under O$_2$ ambient. Source-drain activation is performed together with the dopant activation for the Ge photo-detector n$^+$ electrode at 600 $^\circ$C, 10 sec. Using this low thermal process flow, Ge CMOSFET had been fabricated with good device performance. Fig 6(a) shows the drive current for p- and n-channel MOSFET fabricated on the same platform shows low dark current of 0.4 nA/ μm2 detector) at -1V reverse bias with responsivity of 190 mA/W at 1.52 μm and extended photon detection to 1.62 μm wavelength. CMOSFET fabricated on this Ge platform shows low dark current of 0.4 nA (leakage < 0.4 mA/cm2 for typical 100 μm2 detector) at -1V reverse bias with responsivity of 190 mA/W at 1.52 μm and extended photon detection to 1.62 μm wavelength. CMOSFET fabricated on the same platform with HfO$_2$/TaN gate stack with low thermal processing flow (\leq700$^\circ$C) shows good CMOS performance with hole mobility more than 2× of its bulk-Si counterpart.

IV. CONCLUSION

Using Si/SiGe buffer layer coupled with two step Ge growth process, we are able to increase the tensile strain in Ge layer to 0.63% suitable for photon detection in the L-band. Lateral p-i-n Ge photo-detector fabricated on this Ge platform shows low dark current of 0.4 nA for Ge n-channel MOSFET for L_g = 5 μm. Mobility measurement using split-CV shows hole mobility in tensile strained Ge (253 cm2/Vs) is more than 2× higher compared to the Si universal mobility (121 cm2/Vs) at 0.2 MV/cm (Fig. 6(b)).

REFERENCES