With increasing interest worldwide in using a risk-based approach to breast cancer screening over the age-based approach, a question raised by policy makers and the public is “How much value does genetics add?”

In this breast cancer case study, led by Dr Yeoh from the Genome Institute of Singapore, different state wide approaches to breast cancer risk stratification and genetics were examined to stratify 7,600 Asian women based on their individual breast cancer risk. Women are classified into high or low breast cancer risk groups. The following criteria were used to define high risk:

1. Breast cancer patients recruited by Malaysian collaborators were not identified by the Gail model or family history.
2. Breast cancer patients in the study were recruited from the Singapore Breast Cancer Cohort study which included over 20,000 breast cancer patients recruited by Malaysian collaborators.
3. Breast cancer patients in the study were recruited from the Singapore Breast Cancer Cohort study which included over 20,000 breast cancer patients.
4. Breast cancer patients in the study were recruited from the Singapore Breast Cancer Cohort study which included over 20,000 breast cancer patients.

Risk prediction using genetic data identifies high risk women missed by using only non-genetic risk tools. In total, 1,041 were identified as high risk by one or more of the risk stratification tools. While there is a certain degree of overlap in the high risk individuals identified by the four tools, each of the four tools identified 1,247 (47.1% of total) inaccurate, 485 (17.0%) of which were identified by PRS and 1,592 (56.0%) of which were identified by Gail model.

Genetic risk prediction can identify high risk women who are not yet at the age eligible for mammography screening. This study was funded by the National Research Foundation Singapore, A*STAR, and the NMRC Clinician Scientist Award. This pilot study identifies women who are at a higher risk of developing the condition than the general population. Women who are at a higher risk of developing breast cancer were directed to study sites specialists and are expected to have a higher risk of breast cancer than the general population. Women who are expected to have a higher risk of breast cancer are directed to study sites specialists and are expected to have a higher risk of breast cancer than the general population.

In view of public health policies, the findings support the incorporation of genetic tools for breast cancer risk stratification. Given that screening under age is inaccurate and when even cost is not a barrier to entry, we believe that increasing awareness of genetic risk information may help women make informed decisions and motivate them to attend screening. In view of public health policies, the findings support the incorporation of genetic tools for breast cancer risk stratification. Given that screening under age is inaccurate and when even cost is not a barrier to entry, we believe that increasing awareness of genetic risk information may help women make informed decisions and motivate them to attend screening. In view of public health policies, the findings support the incorporation of genetic tools for breast cancer risk stratification. Given that screening under age is inaccurate and when even cost is not a barrier to entry, we believe that increasing awareness of genetic risk information may help women make informed decisions and motivate them to attend screening.