

Photonics: Dye-free Colour Printing using Metal Nanostructures

About the Technology

Conventional dye-based prints lack functionalities such as stereoscopic 3D images and polarisation-sensitivity which enable multiple images to be encoded on the same print-area. IMRE researchers developed a technology using aluminum as the plasmonic material, to achieve a full colour range for high-resolution colour printing with enhanced durability and reduced material costs.

An example of an image of a reproduced Monet masterpiece which measured a mere 200 by 250 micrometres, achieved using the printing technology, small enough to be printed onto a strand of human hair.

Key Features

- Dye-free and fade-free printing for ultra highresolution colour prints of 62,500 dpi
- Print features of ~50 times smaller than its inkbased counterparts
- Broad spectrum of colours from a single metal evaporation step on a nanostructured substrate
- No colour bleeding
- Colour elements that can be engineered to enable encoding of two sets of information, exhibiting one of two colours depending on the polarisation of the light used to illuminate it

Potential Applications

- Anti-counterfeiting and security features
- Product branding and authentication

Collaboration Opportunities

- Products which require hard-to-replicate security tags
- Scale-up approaches which can print nano-scale pixels to large (>1cm²) areas

Reference:

Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, et al. Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Letters. 2014;14(7):4023-9.

For more information, please contact: industry@imre.a-star.edu.sg

IMRE website: https://www.a-star.edu.sg/imre/A*STAR website: https://www.a-star.edu.sg/