PRL3-zumab as an immunotherapy to inhibit tumors expressing PRL3 oncoprotein

Wednesday, 12 Jun 2019

From left: Min Thura, Joel Xuan En Sng, Abhishek Gupta, Qi Zeng, Nicholas Yan Zhi Tan, Abdul Qader Al-Aidaroos

Authors

Min Thura^{1,12}, Abdul Qader Al-Aidaroos^{1,12}, Abhishek Gupta1, Cheng Ean Chee², Soo Chin Lee², Kam Man Hui³, Jie Li¹, Yeoh Khay Guan⁴, Wei Peng Yong², Jimmy So⁵, Wee Joo Chng², Chin Hin Ng², Jianbiao Zhou², Ling Zhi Wang⁶, John Shyi Peng Yuen⁷, Henry Sun Sien Ho⁷, Sim Mei Yi⁷, Edmund Chiong⁵, Su Pin Choo⁸, Joanne Ngeow^{1,8,9}, Matthew Chau Hsien Ng⁸, Clarinda Chua⁸, Eugene Shen Ann Yeo¹⁰, Iain Bee Huat Tan⁸, Joel Xuan En Sng¹, Nicholas Yan Zhi Tan¹, Jean Paul Thiery¹, Boon Cher Goh² & Qi Zeng^{1,11}

Affiliations

¹ Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.

² Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore 119082, Singapore.

³ Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.

⁴ Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore.

⁵ Division of Surgical Oncology, National University Cancer Institute, Singapore (NCIS), Singapore 119082, Singapore.

⁶ Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.

⁷ Department of Urology, Singapore General Hospital, Singapore 169608, Singapore.
⁸ Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.

⁹ Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.

¹⁰ Department of Colorectal Surgery, Singapore General Hospital, Singapore 169608, Singapore.

¹¹ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore.

¹² These authors contributed equally: Min Thura, Abdul Qader Al-Aidaroos.

Correspondence and requests for materials should be addressed to Zeng Qi (email: mcbzengq@imcb.a-star.edu.sg)

Published online in *Nature Communications* on 05 June 2019.

(Open access article - please see https://rdcu.be/bFlj4)

Abstract

Tumor-specific antibody drugs can serve as cancer therapy with minimal side effects. A humanized antibody, PRL3-zumab, specifically binds to an intracellular oncogenic phosphatase PRL3, which is frequently expressed in several cancers. Here we show that PRL3-zumab specifically inhibits PRL3+ cancer cells in vivo, but not in vitro. PRL3 antigens are detected on the cell surface and outer exosomal membranes, implying an 'inside-out' externalization of PRL3. PRL3-zumab binds to surface PRL3 in a manner consistent with that in classical antibody-dependent cell-mediated cytotoxicity or antibody-dependent cellular phagocytosis tumor elimination pathways, as PRL3-zumab requires an intact Fc region and host FcγII/III receptor engagement to recruit B cells, NK cells and macrophages to PRL3+ tumor microenvironments. PRL3 is overexpressed in 80.6% of 151 fresh-frozen tumor samples across 11 common cancers examined, but not in patient-matched normal tissues, thereby implicating PRL3 as a tumor-associated antigen. Targeting externalized PRL3 antigens with PRL3-zumab may represent a feasible approach for anti-tumor immunotherapy.

Figure:

PRL3-zumab promotes immune cell infiltration into the tumor microenvironment for tumor clearance. *Upper panels*, immunofluorescence images of adjacent normal and tumor boundary regions in untreated (left) and PRL3-zumab-treated (right) liver tissue sections in mice. *Red*, F4/80 macrophage marker; *blue*, DAPI nuclear stain. Note the pronounced increase of F4/80 macrophage infiltration into the tumor niche in treated mice. *Lower panel*, proposed model for PRL3-zumab anti-tumor activity.