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ABSTRACT  

Cellular reprogramming suffers from low efficiency especially for the human cells. To 

deconstruct the heterogeneity and unravel the mechanisms for successful reprogramming, we 

adopted single-cell RNA sequencing (scRNA-Seq) and single-cell assay for transposase-

accessible chromatin (scATAC-Seq) to profile reprogramming cells across various time points. 

Our analysis revealed that reprogramming cells proceed in an asynchronous trajectory and 

diversify into heterogeneous subpopulations. We identified fluorescent probes and surface 

markers to enrich for the early reprogrammed human cells. Furthermore, combinatory usage 

of the surface markers enabled the fine segregation of the early-intermediate cells with diverse 

reprogramming propensities. scATAC-Seq analysis further uncovered the genomic partitions 

and transcription factors responsible for the regulatory phasing of reprogramming process. 

Binary choice between a FOSL1 and a TEAD4-centric regulatory network determines the 

outcome of a successful reprogramming. Together, our study illuminates the multitude of 

diverse routes transversed by individual reprogramming cells and presents an integrative 

roadmap for identifying the mechanistic part list of the reprogramming machinery. 
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FIGURE LEGEND  

(A) Overview of the prepared single-cell NGS libraries across various time points of 

human cellular reprogramming. The microfluidic platform was used to prepare 439 

scRNA-Seq and 891 scATAC-Seq libraries (duplicates) of good quality. 10X 

Genomics platform was utilized to prepare 32,138 scRNA-Seq libraries of good 

quality. 

 

(B) Proposed model of the study.  

 


