Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation

Wednesday, 23 Dec 2020

Authors

Carly Leung^{1,2}, Katzrin Bte Ahmad Murad^{1,2}, Adelyn Liang Thing Tan^{1,2}, Swathi Yada^{1,2}, Sowmya Sagiraju^{1,2}, Peter Karl Bode³, Nick Barker^{1,2,4,5*}

¹ A*STAR Institute of Medical Biology, Singapore, 138648 Singapore

² A*STAR Institute of Molecular and Cellular Biology, Singapore, 138648 Singapore

³ Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland

⁴ Cancer Research Institute, Kanazawa University, Kakuma-machi Kanazawa, 920-1192, Japan

⁵ School of Biological Sciences, Nanyang Technological University, Singapore, 308232 Singapore

* Corresponding author

E-mail: Nicholas_barker@imcb.a-star.edu.sg

Published online in Cell Reports on 22 December 2020

Abstract

Regeneration of adult skeletal muscle is driven largely by resident satellite cells, a stem cell population increasingly considered to display a high degree of molecular heterogeneity. In this study, we find that Lgr5, a receptor for Rspo and a potent mediator of Wnt/ β -catenin signalling, marks a subset of activated satellite cells which contribute to muscle regeneration. Lgr5 is found to be rapidly upregulated in purified myogenic progenitors following acute cardiotoxin-induced injury. *In vivo* lineage tracing using our *Lgr5-2ACre*^{ERT2}*R26tdTomato*^{LSL} reporter mouse model shows that *Lgr5*⁺ cells can reconstitute damaged muscle fibres following muscle injury, as well as replenish the quiescent satellite cell pool. Moreover, conditional mutation in *Lgr52ACre*^{ERT2};*Kras*^{G12D};*Trp53*^{flox/flox} mice drove undifferentiated pleomorphic sarcoma formation in adult mice, thereby substantiating Lgr5⁺ cells as a cell-of-origin of sarcomas. Our findings provide the groundwork for developing Rspo/Wnt signalling-based therapeutics to potentially enhance regenerative outcomes of skeletal muscles in degenerative muscle diseases.

Figure

Figure legend: Lineage tracing reveals active contribution of Lgr5+ satellite cells to muscle regeneration in vivo.