Multi-species single-cell transcriptomic analysis of ocular compartment regulons

Monday, 1 November 2021

Authors

Pradeep Gautam^{1,2,14}, Kiyofumi Hamashima^{1,14}, Ying Chen^{1,3}, Yingying Zeng^{1,4}, Bar Makovoz⁵, Bhav Harshad Parikh^{6,7}, Hsin Yee Lee¹, Katherine Anne Lau¹, Xinyi Su^{6,7,8}, Raymond CB Wong ^{9,10,11}, Woon-Khiong Chan², Hu Li¹², Timothy A Blenkinsop⁵, Yuin-Han Loh^{1,2,3,13}.

¹Laboratory for Epigenetics, Stem cells & Cell Therapy, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore

²Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore

³NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore

⁴School of Biological Sciences, Nanyang Technological University, 637551, Singapore

⁵Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

⁶Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

⁷Translational Retinal Research Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore

⁸Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore

⁹Centre for Eye Research Australia, Melbourne, Vic., Australia

¹⁰Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Vic., Australia ¹¹Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen, China

¹²Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA

¹³Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore

¹⁴ These authors contributed equally to this work.

Correspondence should be addressed to H.L. (e-mail: <u>Li.Hu@mayo.edu</u>), T.A.B. (e-mail: <u>timothy.blenkinsop@mssm.edu</u>) and Y.-H.L. (e-mail: <u>yhloh@imcb.a-star.edu.sg</u>).

Published in Nature Communications on 28 September 2021

Abstract

The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we check for conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells.

Figure legend: Preparation of single-cell transcriptome atlas of the human eye

a. Overview of single-cell RNA-seq libraries prepared from different sources. Postmortem human and pig eyes were enzymatically dissociated, and single cells were isolated. Approximately 50,000 single cells across the human eye of six individuals using droplet-based scRNA-seq platform were profiled.

b. tSNE plot visualisation of human eye cell-types coloured by 16 different transcriptionally distinct clusters.

c. Heatmap of differentially expressed genes (DEGs) used to classify cell types for each cluster. The top 5 genes were selected using the one-sided Wilcoxon rank-sum test (p-value < $0.01 \& |avg_log2FC| > 0.25$), and ranked based on their p-values within each identified cell type. Scaled expression levels for each cell are colour-coded.

d. tSNE plots showing expression of selected marker genes depicting major classes of cells in the human eye. Scaled expression levels for each cell are colour-coded and overlaid onto the t-SNE plot.

e. GO analysis of DEGs associated with distinct clusters. Metascape calculated the statistical significance of each GO term enrichment (p-value) based on the accumulative hypergeometric distribution. The Grey colour indicates a lack of significance.