Metformin perturbs pancreatic differentiation from human embryonic stem cells

Wednesday, 9 June 2021

Authors:
Linh Nguyen¹,², Lillian Yuxian Lim¹,#, Shirley Suet Lee Ding¹,#, Nur Shabrina Amirruddin¹,³, Shawn Hoon⁴, Shiao-Yng Chan⁵,⁶ and Adrian Kee Keong Teo¹,²,³,⁷,*

Affiliations:
¹Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
²Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
³Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
⁴Molecular Engineering Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
⁵Singapore Institute for Clinical Sciences (SICS), A*STAR, Singapore 117609, Singapore
⁶Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
⁷Lead Contact
Abstract:
Metformin is becoming a popular treatment before and during pregnancy but current literature on in utero exposure to metformin lacks long-term clinical trials and mechanistic studies. Current literature on the effects of metformin on mature pancreatic β cells highlighted its dual, opposing, protective or inhibitory, effects depending on metabolic environments. However, the impact of metformin on developing human pancreatic β cells remains unknown. Here, we investigated the potential effects of metformin exposure on human pancreatic β cell development and function in vitro. In the absence of metabolic challenges such as high levels of glucose and fatty acids, metformin exposure impaired the development and function of pancreatic β cells, with downregulation of pancreatic genes and dysfunctional mitochondrial respiration. It also affected the insulin secretion function of pancreatic β cells. These findings call for further in-depth evaluation of the exposure of human embryonic and fetal tissue during pregnancy to metformin, and its implications on long-term offspring health.
Figure legend: Model depicting the effects of metformin on hESC-derived pancreatic β-like cells and pancreatic β cells

Metformin decreases mitochondrial respiration in pancreatic β-like cells by affecting genes in the electron transport chain (ETC), leading to decreased ATP production. These changes in turn result in reduced insulin expression and insulin secretory function in response to a glucose challenge.