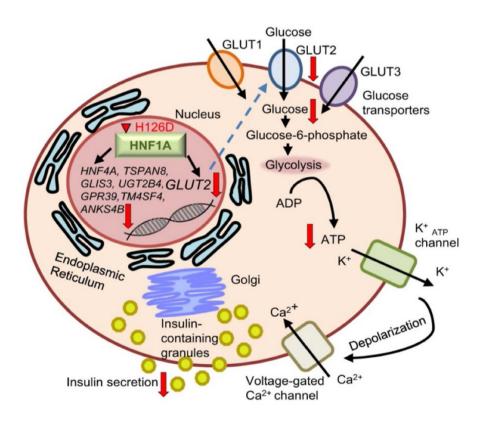
Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells

Wednesday, 16 June 2021

Authors:

Blaise Su Jun Low^{1,2}, Chang Siang Lim^{1,3}, Yaw Sing Tan⁴, Shirley Suet Lee Ding¹, Natasha Hui Jin Ng¹, Vidhya Gomathi Krishnan⁵, Su Fen Ang⁶, Claire Wen Ying Neo^{1,2}, Chandra S Verma⁴, Shawn Hoon⁵, Su Chi Lim^{3,6}, E Shyong Tai² and Adrian Kee Keong Teo^{1,2,7,*}

¹Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
²Yong Loo Lin School of Medicine, National University of Singapore, Singapore
³Saw Swee Hock School of Public Health, National University of Singapore, Singapore
⁴Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
⁵Molecular Engineering Lab (MEL), Agency for Science, Technology and Research (A*STAR), Singapore
⁶Khoo Teck Puat Hospital, Singapore
⁷Lead Contact


*Correspondence: ateo@imcb.a-star.edu.sg; drainteo@gmail.com

Published in Nature Communications on 25th May 2021

Abstract

Heterozygous *HNF1A* gene mutations can cause maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. However, specific mechanisms of MODY3 in humans remain unclear due to lack of access to diseased human pancreatic cells. Here, we utilize MODY3 patient-derived human induced pluripotent stem cells (hiPSCs) to study the effect(s) of a causal *HNF1A*^{+/H126D} mutation on pancreatic function. Molecular dynamics simulations predict that the H126D mutation could compromise DNA binding and gene target transcription. Genome-wide RNA-Seq and ChIP-Seq analyses on MODY3 hiPSC-derived endocrine progenitors reveal numerous HNF1A gene targets affected by the mutation. We find decreased glucose transporter GLUT2 expression, which is associated with reduced glucose uptake and ATP production in the MODY3 hiPSC-derived β -like cells. Overall, our findings reveal the importance of HNF1A in regulating *GLUT2* and several genes involved in insulin secretion that can account for the insulin secretory defect clinically observed in MODY3 patients.

Figure

Figure legend: Summary diagram showing the components of stimulus-secretion coupling in human β cell affected by HNF1A H126D mutation