
GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ER α glycosylation and stability to cancer

Wednesday, 17 Mar 2021

Authors

Eun Myoung Shin^{1,†}, Vinh Thang Huynh^{1,2,†}, Sultan Abda Neja^{1,‡}, Chia Yi Liu^{3,‡}, Anandhkumar Raju¹, Kelly Tan³, Nguan Soon TAN^{2,4}, Jayantha Gunaratne^{1,5}, Xuezhi Bi^{3,6}, Lakshminarayan M Iyer⁷, L. Aravind⁷, Vinay Tergaonkar^{1,8,*}

¹Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.

²Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

³ Bioprocessing Technology Institute (BTI), A*STAR, Singapore

⁴ School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore, Singapore

⁵Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117594, Singapore.

⁶ Duke-NUS Medical School, Singapore 169857

⁷ National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

⁸ Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.

[†]These authors contributed equally to this work.

[‡]These authors contributed equally to this work.

***Correspondence:** vinayt@imcb.a-star.edu.sg Laboratory of NF-κB Signaling,

Institute of Molecular and Cell Biology (IMCB),

A*STAR (Agency for Science, Technology and Research),

61 Biopolis Drive, Proteos,

Singapore 138673

Published in Science Advances on 17th March 2021

Abstract

What covalent modifications control the temporal ubiquitination of ER α and hence the duration of its transcriptional activity remain poorly understood. We show that GREB1, an ER α inducible enzyme catalyzes O-GlcNAcylation of ER α at residues T553/S554, which stabilizes ER α protein by inhibiting association with the ubiquitin ligase ZNF598. Loss of GREB1mediated glycosylation of ER α results in reduced cellular ER α levels and insensitivity to estrogen. Higher *GREB1* expression in ER α^{+ve} breast cancer is associated with greater survival in response to tamoxifen, an ER α agonist. Mice lacking *Greb1* exhibit growth and fertility defects reminiscent of phenotypes in ER α null mice. In summary, this study identifies GREB1, a protein with an evolutionarily conserved domain related to DNA-modifying glycosyltransferases of bacteriophages and kinetoplastids, as the first inducible and the only other (apart from OGT) O-GlcNAc glycosyltransferase in mammalian cytoplasm and ER α as its first substrate.

Graphical abstract:

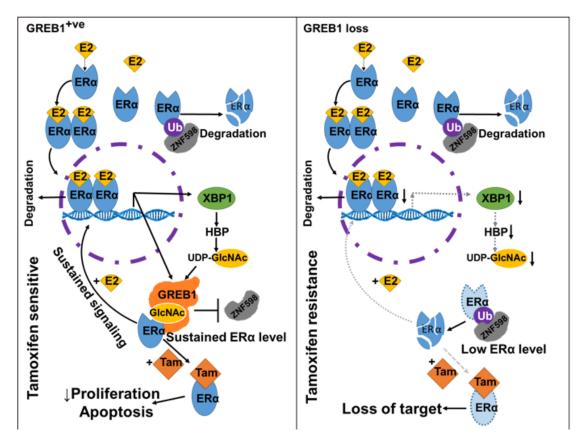


Figure legend: Graphical abstracts of GREB1 function in ER α^{+ve} breast cancer and drug response. When cells express GREB1, ER α is stabilized by glycosylation and imposes ER α signaling transcription signature, which is vulnerable to tamoxifen, an ER α agonist. For cells that transcriptionally repress GREB1, ER α protein and its transcriptional profile are lost. Because of this loss of target, these cells are resistance to tamoxifen.