Seadragon genome analysis provides insights into its phenotype and sexdetermination locus

Wednesday, 25 Aug 2021

Authors

Qu, M.^{1†}, Liu, Y.^{1†}, Zhang, Y.^{1†}, Wan, S.^{1†}, Ravi, V.^{2†}, Qin, G.^{1†}, Jiang, H.¹, Wang, X.¹, Zhang, H.¹, Zhang, B.¹, Gao, Z.³, Huysseune, A.⁴, Zhang, Z.⁵, Zhang, H.¹, Chen, Z.¹, Yu, H.⁶, Wu, Y.¹, Tang, L.¹, Li, C.¹, Zhong, J.¹, Ma, L.⁶, Wang, F.⁶, Yin, H.Z.⁶, Witten, P.E.⁴, Meyer, A^{7*}., Venkatesh, B^{2*}. and Lin, Q^{1*}.

¹CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea.
²Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore.
³College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China.
⁴Ghent University, Department of Biology, Ledeganckstraat 35, B-9000 Ghent, Belgium.
⁵University of Marine Science and Technology, Minato, Tokyo, Japan.
⁶Biomarker Technologies Corporation, 101300 Beijing, China.
⁷Department of Biology, University of Konstanz, 78464 Konstanz, Germany.

[†] These authors contributed equally to this work.

*Corresponding authors:

axel.meyer@uni-konstanz.de, mcbbv@imcb.a-star.edu.sg and lingiang@scsio.ac.cn

Published in *Science Advances* on 18 August 2021: URL: <u>https://advances.sciencemag.org/content/7/34/eabg5196</u>

Abstract

The iconic phenotype of seadragons includes leaf-like appendages, a toothless tubular mouth, and male pregnancy involving incubation of fertilized eggs on an open "brood patch". We de novo sequenced male and female genomes of the common seadragon (*Phyllopteryx taeniolatus*) and its closely related species, the alligator pipefish (*Syngnathoides biaculeatus*). Transcription profiles from an evolutionary novelty, the leaf-like appendages, show that a set of genes typically involved in fin development have been co-opted as well as an enrichment of transcripts for potential tissue repair and immune defense genes. The zebrafish mutants for *scpp5*, which is lost in all syngnathids, either lacked teeth or displayed deformed pharyngeal teeth, supporting the hypothesis that the loss of *scpp5* has contributed to the loss of teeth in syngnathids. A putative sex–determining locus encoding a male-specific *amhr2y* gene shared by common seadragon and alligator pipefish was identified.

Figure

Key features of the common seadragon (*P. taeniolatus*) and the alligator pipefish (*S. biaculeatus*) and their phylogenetic positions. (A) The seadragon has a dragon-shaped body with many special leaf-like appendages, and a long tubular snout lacking teeth. Seadragon males incubate eggs on a brood patch on the underside of the tail. (**B**) A male alligator pipefish showing eggs incubated on a brood patch on the underside of the trunk. (**C**) Phylogenetic tree of 19 ray-finned fishes. Bootstrap values below 80 are not shown.