Identification of mechanism of cancer-cell-specific reactivation of hTERT offers therapeutic opportunities for blocking telomerase specifically in human colorectal cancer

Wednesday, 22 June 2022

Authors

Semih Can Akıncılar¹, Joelle Yi Heng Chua¹, Qin Feng Ng¹, Claire Hian Tzer Chan¹, Zahra Eslami-S¹, Kaijing Chen², Joo-Leng Low³, Surendar Arumugam¹, Luay Aswad², Clarinda Chua^{4,5}, Iain Beehuat Tan^{4,5}, Ramanuj DasGupta³, Melissa Jane Fullwood^{2,6}, Vinay Tergaonkar^{1,7,8}

¹Division of Cancer Genetics and Therapeutics, Laboratory of NFkB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 138673, Singapore.

²Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.

³Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, 138672, Singapore.

⁴Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672, Singapore.

⁵Department of Medical Oncology, National Cancer Centre Singapore, 169610, Singapore.

⁶School of Biological Sciences, Nanyang Technological University, 637551, Singapore.

⁷Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 119074, Singapore.

⁸Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 117596, Singapore.

Published in *Nucleic acids research* on 16 June 2022.

Abstract

Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated β-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.

Wild-type hTERT Promoter

Figure legend: Reactivation of *hTERT*gene in cancer cells. Cancer-specific long-range chromatin interactions switch on wild-type *hTERT*promoter.