Identification of mechanism of cancer-cell-specific reactivation of hTERT offers therapeutic opportunities for blocking telomerase specifically in human colorectal cancer

Wednesday, 22 June 2022

Authors

Semih Can Akıncılar ${ }^{1}$, Joelle Yi Heng Chua ${ }^{1}$, Qin Feng Ng^{1}, Claire Hian Tzer Chan ${ }^{1}$, Zahra Eslami-S ${ }^{1}$, Kaijing Chen ${ }^{2}$, Joo-Leng Low ${ }^{3}$, Surendar Arumugam ${ }^{1}$, Luay Aswad ${ }^{2}$, Clarinda Chua ${ }^{4,5}$, lain Beehuat Tan ${ }^{4,5}$, Ramanuj DasGupta ${ }^{3}$, Melissa Jane Fullwood ${ }^{2,6}$, Vinay Tergaonkar ${ }^{1,7,8}$
${ }^{1}$ Division of Cancer Genetics and Therapeutics, Laboratory of NFKB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 138673, Singapore.
${ }^{2}$ Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
${ }^{3}$ Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, 138672, Singapore.
${ }^{4}$ Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672, Singapore.
${ }^{5}$ Department of Medical Oncology, National Cancer Centre Singapore, 169610, Singapore.
${ }^{6}$ School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
${ }^{7}$ Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 119074, Singapore.
${ }^{8}$ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 117596, Singapore.

Published in Nucleic acids research on 16 June 2022.

Abstract

Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19\% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated β-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwisetumorigenesis and provide a new perspective for developing cancer-specific drugs.

Wild-type hTERT Promoter

Figure legend: Reactivation of hTERTgene in cancer cells. Cancer-specific long-range chromatin interactions switch on wild-type hTERTpromoter.

