Publications

Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility.
*Nature Biotechnology*, 30(2), 165-73.

Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells.

Embryological-origin-dependent differences in homeobox expression in adult aorta: role in regional phenotypic variability and regulation of NF-κB activity.
*Arteriosclerosis, Thrombosis, and Vascular Biology*, 33(6), 1248-56.

Modelling cerebrovascular pathophysiology in amyloid-β metabolism using neural crest-derived smooth muscle cells.
*Cell Reports*, 9(1), 391-401.

Human stem cell-derived endothelial-hepatic platform for efficacy testing of vascular-protective metabolites from nutraceuticals.
*Stem Cells Translational Medicine*, 6(3), 851-863.

Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation.

Ng GJL, Quek AML, Cheung C, et al. (2017).
*Neurochemistry International*, 107, 11-22.

Contribution of BMPR2 mutations and extrinsic factors in cellular phenotypes of pulmonary arterial hypertension.
Ultra-high signal detection of human embryonic stem cells driven by two-dimensional materials.