

INNOVATION & TECHNOLOGY CONFERENCE 2023

Innovation Through Advanced Manufacturing Research & Technologies

INNOVATION & TECHNOLOGY

CONFERENCE 2023 Innovation Through Advanced Manufacturing Research & Technologies

Manufacturing Innovation

Dr Chua Beng Wah Acting Director Precision Engineering Centre of Innovation (PE COI), SIMTech

Singapore Institute of Manufacturing Technology SIMTech

ears of Driving Manufacturing Innovations with Local Enterprises

MANUFACTURING **INNOVATION -PE COI (PRECISION ENGINEERING CENTRE OF INNOVATION**)

Chua Beng Wah Ag Director, PE COI & Advanced Forming and Surface **Technology Division**

A*STAR SIMTech

Precision Engineering Centre Of Innovation

Sustaining and Advancing PE Industry

About PE COI

To support our precision engineering manufacturing companies in leveraging SIMTech's innovative manufacturing technologies to sustain, transform and advance their businesses locally and internationally.

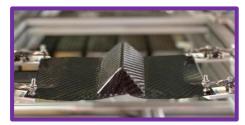
* Data since 1 June 2007

Industry Development – Technology Initiatives

Over 2,700 Precision Engineering (PE) firms needed to supply critical products and manufacture complex components and equipment to support these industries.

3D Additive Manufacturing

Laser aided - Additive Manufacturing & welding


Surface & Circular Engineering

Functional & structural Material Manufacturing

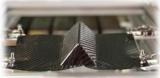
Polymer & Composite Manufacturing

Manufacturing Innovation Initiatives – T Model

Broad Based Initiatives

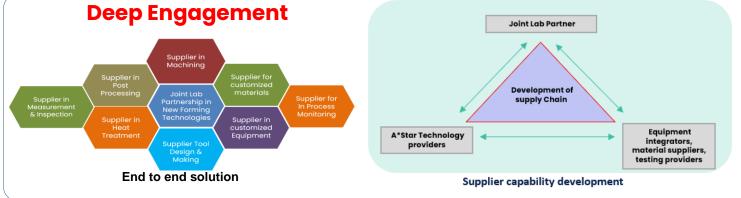
3D Additive Manufacturing Parts with complex design and geometries

Laser aided Additive Manufacturing & welding Large format high temperature alloy components

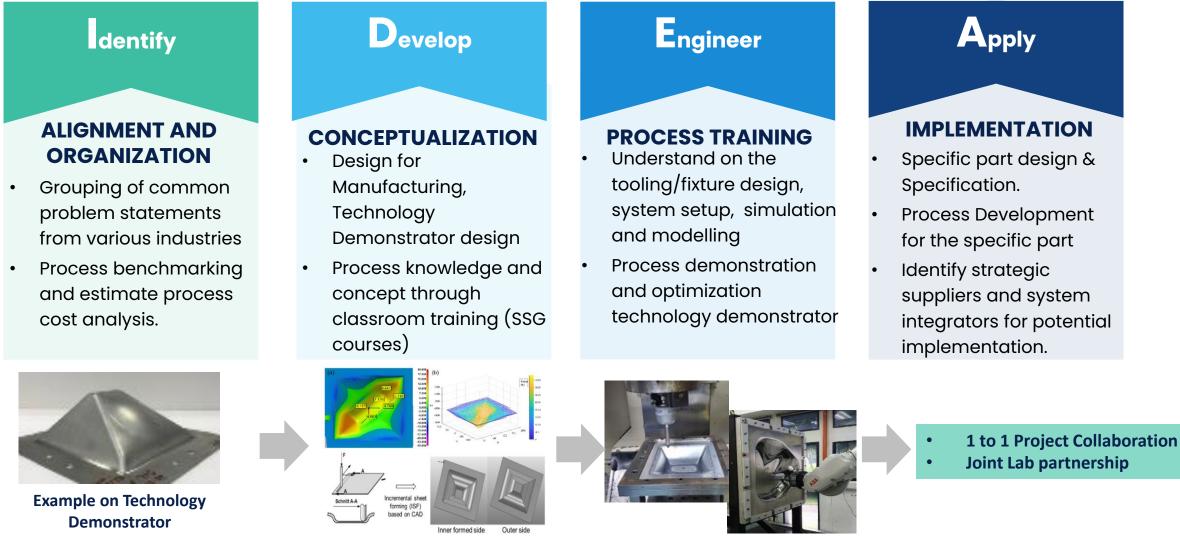

Material Manufacturing

Hybrid metal composite components

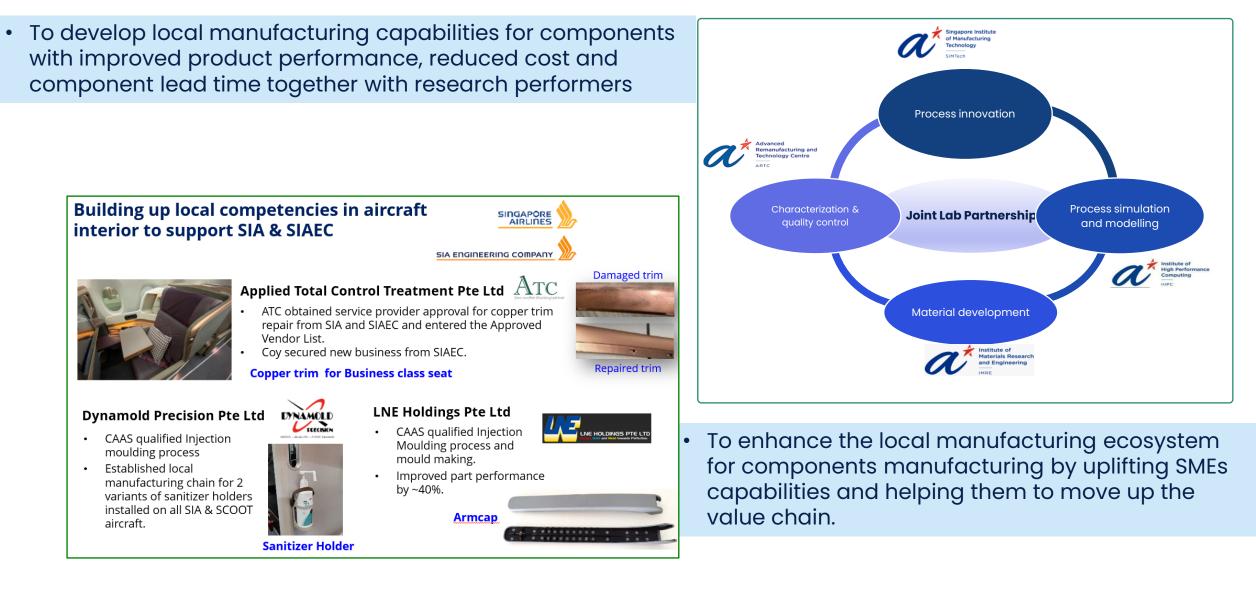
with high strength-to-weight ratio and



Surface Engineering Advanced surface treatment and sustainable coatings

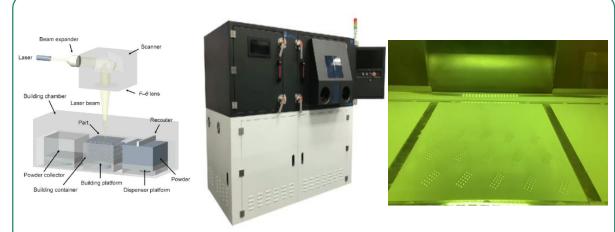

Polymer & Composite Manufacturing

Lightweight structural thermoplastic and hybrid composites



Broad Based Engagement

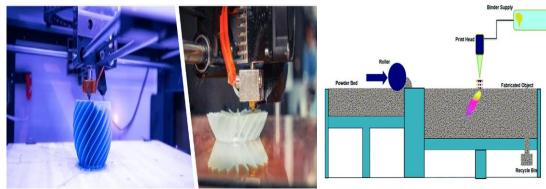
I.D.E.A workflow to bring together companies with similar manufacturing needs and provide opportunities for cost-sharing.



Deep Engagement - Joint Lab Partnership

Technology Initiative – 3D Additive Manufacturing Motivation

 To demonstrate end-to-end AM solutions from design & process optimisation, powder preparation & handling and product printing to secondary operations for manufacturing parts with complex design and geometries.



Micro Selective Laser Melting process

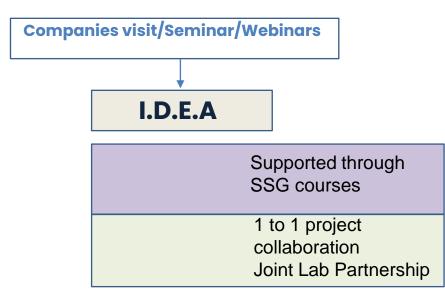
Keynote Speaker

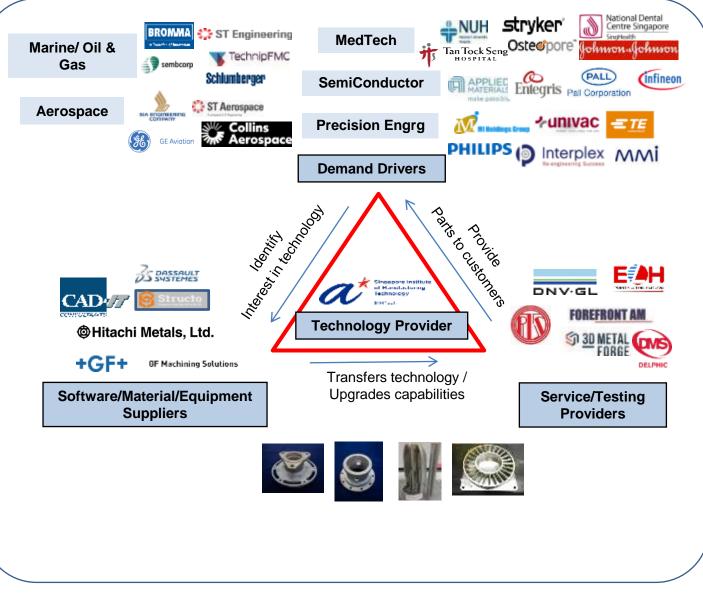
Prof David Rosen – Design and Functionality of products taking advantage of the unique capabilities of AM, including geometric complexity, multiple materials, and multi-functionality.

Fused Deposition Modelling (FDM)/Fused Filament Fabrication (FFF) process Ceramic Binderjet process

Potential Applications

- Complex design heat sinks
- Porous filters
- Conformal cooling tooling
- Medical devices

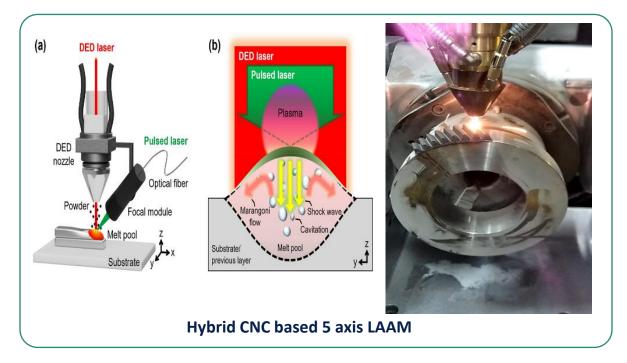



Contact Person: Tan Lye King – <u>tanlk@SIMTech.a-star.edu.sg</u>

Technology Initiative - 3D Additive Manufacturing

Value Capture

 Companies gain process knowledge on 3D powder based and extrusion based AM processes to assess the feasibility of 3D product printing for the various industries.





Technology Initiative – Laser Aided Additive Manufacturing

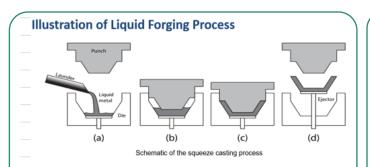
Motivation

 To demonstrate both robotic and CNC based hybrid LAAM/WAAM with machining and welding technologies for manufacture large format high temperature alloy components in marine oil and gas, transport, construction and automotive industries.

Hybrid robotic 5 Axis LAAM and Machining

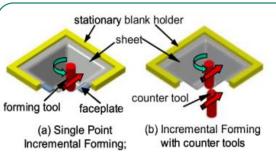
Potential Applications

- Large format structural components
- Multi material metal parts

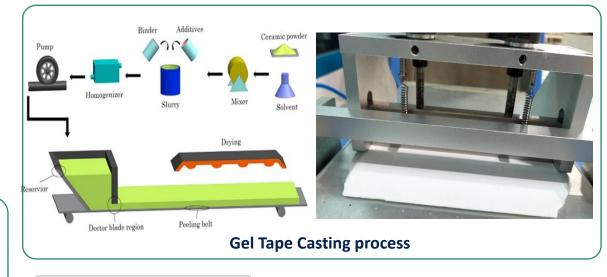


Contact Person: Tan Lye King – <u>tanlk@SIMTech.a-star.edu.sg</u>

Technology Initiative – Structural & Functional Material Manufacturing


Motivation

To demonstrate integrated liquid forging and powder forming processes for near net shape **hybrid metal composite components with high strengthto-weight ratio and enhanced functional properties**

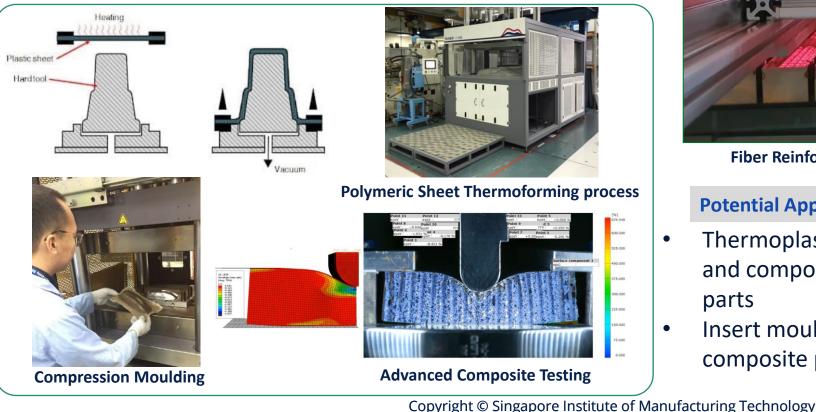


Liquid Forging

Dieless Forming

Potential Applications

- Conformable structural metal sheet parts
- Thin and flexible functional ceramic sheets
- Multi material for high thermal components

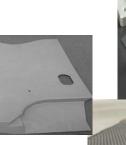

Contact Person: Alex Thoe – <u>tbthoe@SIMTech.a-star.edu.sg</u>

Technology Initiative – Polymer & Composite Manufacturing **Motivation**

All Rights Reserved

To demonstrate technologies in lightweight • structural thermoplastic and hybrid

component manufacturing for engineering and transport applications to enhance local companies' capabilities for new business opportunities.



Fiber Reinforced THERMOPLASTIC Composites Thermoforming

Potential Applications

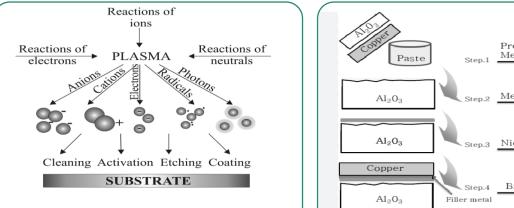
- Thermoplastic polymeric and composite aviation parts
- Insert moulding of composite parts

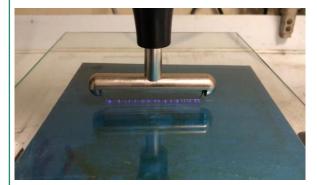
Contact Person: Sun Zheng – zsun@SIMTech.a-star.edu.sg

Training Course - Polymer & Composite Manufacturing

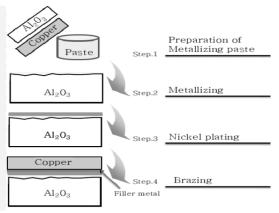
Supercharge Your Career With Our Upcoming Courses on Advanced Manufacturing Processes for Sustainable Polymer-based Materials and Composites 1 August 2023, Tuesday | 11:00am – 12:00pm To register the webinar

Scan QR code to learn more about our courses

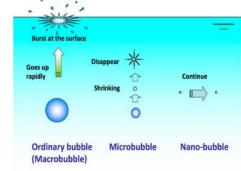



Program of the webinar

D	by Dr Wang Chen, Senior Scientist, Polymer & Composite Processing, SIMTech
	Introduction of Advanced Manufacturing Processes for Sustainable Polymer-based Materials by Dr Lau Soo Khim, Principal Scientist, Polymer & Composite Processing, SIMTech
11:40am – Q 12:00 pm	Q&A

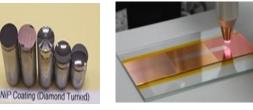

Technology Initiative – Surface and Circular Engineering **Motivation**

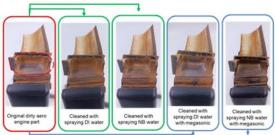
To demonstrate **advanced surface** treatment and sustainable coatings for various applications in Aerospace, Electronics and Automotive industries.



Atmospheric pressure plasma surface modification process

Lab Scale Electroplating line





Nanobubble cleaning process

Potential Applications

- Rapid electrolytic deposition of NiP coating for mould inserts, diamond turning
- **Atmospheric Pressure** • Plasma cleaning
- Nanobubble cleaning for ۲ oil contaminated parts

Contact Person: Goh Chee Chien – gohcc@SIMTech.a-star.edu.sg

Project Collaboration Highlights

Capability Development from process, system integration to building manufacturing ecosystem

SINGAPORE SIA ENGINEERING **On Demand Moulding of** aviation components

SIA*SIAEC*SIMTECH JOINT LAB

15 Apr 2021

ACCELERATED COLLABORATION IN RESPONSE TO COVID-19

In July 2019, a joint laboratory was set up between Singapore Airlines (SIA), SIA Engineering Compa-SIMTech. This tripartite collaboration aimed to accomplish the following goals: (1) to develop local capabilities for aircraft cabin interior components with improved product performance, redu component lead time; (2) to enhance the local manufacturing ecosystem for aircraft cabin interior uplifting SMEs capabilities and helping them to move up the value chain and (3) to provide manpo support the local aerospace cabin interior manufacturing workforce. The established local sup

manufacturing.

Surface Coating of copper trims for cabin seats

A*STAR AND LOCAL SME ATC COLLABORATE ON SUSTAINABLE MRO REPAIR WORK FOR SINGAPORE AIRLINES 21 Jun 2023



Advanced Powder Metallurgy for net shape components

Enabling complex components and sub-

assemblies via MIM & CIM

J. ISDNHoldings Laser aided AM system

ISDN Holdings Limited ("ISDN") is partnering with SIMTech to commercialise the Laser-Aided Additive Manufacturing (LAAM) technology platform for 3D printing and deposition of corrosion-resistant metal structure avy industries such as aerospace, oil and gas, and offshore and marine.

Larae format AM

ecosystem will help Singapore become the R&D Centre of Excellence for cabin interior componer SINGAPORE, 21 June 2023 - The Agency for Science, Technology and Research (A'STAR) and local SME, Applied Total Control Treatment Pte Ltd (ATC) have completed a technology transfer, enabling ATC to take over the repair line for the refurbichment of Singapore Airlines' (SIA) cabin components. The repair line allows SIA to inter-

A big thank you to our industry keynote speakers

Mr Sito Waiseng, Mr Glenndle Sim, Mr Chen Li, Mr Tay Geok Kee, Mr Jacky Chan

Showcase and Promotion

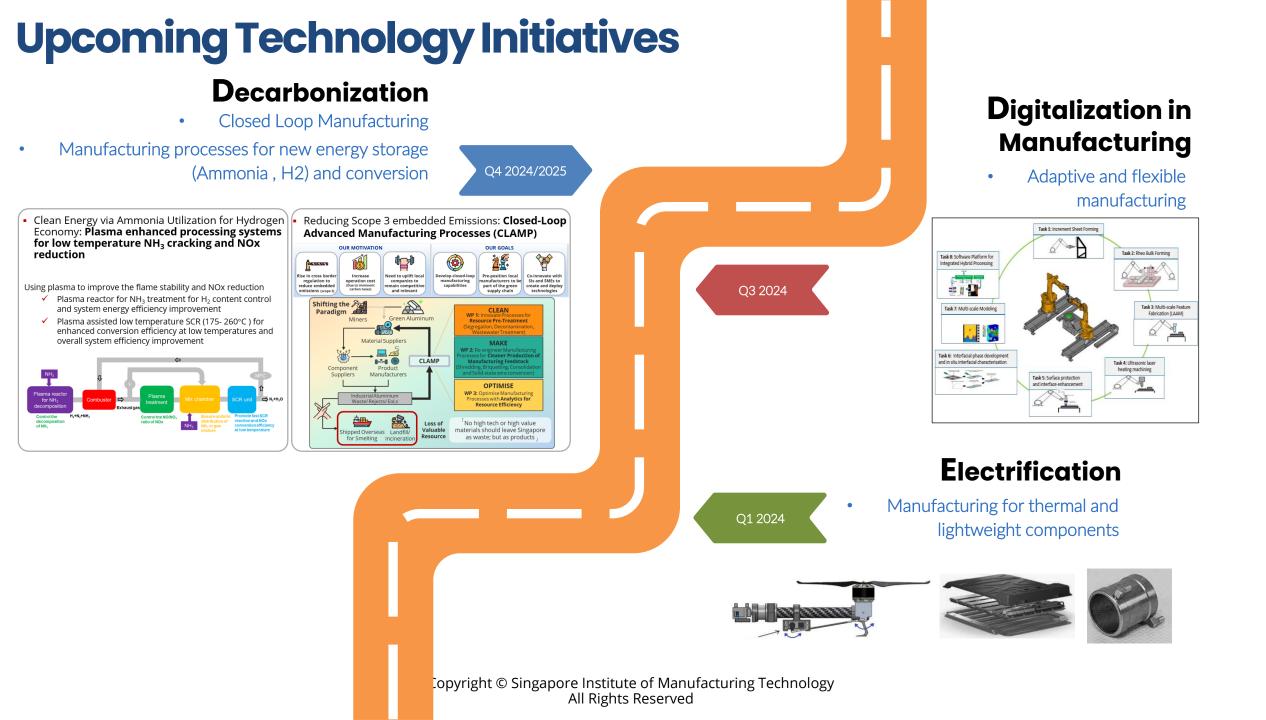
Technology Initiatives

3D Additive Manufacturing

- Laser aided Additive Manufacturing & welding
 - Surface & Circular Engineering

Functional & structural Material Manufacturing

- Series of webinars/workshops to promote new manufacturing Technologies and lab tours
- Strategic discussion with TACs and Agencies
- Research collaboration with IHLs (Institute of higher learning)
- Roundtables & networking


PE COI is one of the appointed partner institutions to validate innovation projects.

Enterprise Innovation Scheme (EIS)

Share: f Y in 🔉 🛛 🗳

As announced in Budget 2023, to encourage businesses to engage in research and development ("R&D"), innovation and capability development activities, DPM and Minister for Finance has decided to introduce the Enterprise Innovation Scheme ("EIS"). Under the EIS, existing tax measures will be enhanced and a new tax measure will be introduced. In addition, eligible businesses may opt to convert up to \$100,000 of the total qualifying expenditure for each Year of Assessment ("YA") into cash at a conversion rate of 20%. Learn more about the <u>EIS</u> (PDF, 588KB).

https://www.iras.gov.sg/schemes/disbursement-schemes/enterprise-innovation-scheme-(eis)

Manufacturing Innovation is the key to enhance our competitiveness

NOVATION

Singapore Institute of Manufacturing Technology SIMTech

Years of Driving Manufacturing Innovations with Local Enterprises 1993 - 2023

Chua Beng Wah bwchua@SIMTech.a-star.edu.sg Contact number: 97975305

01001 1001

1

www.a-star.edu.sg/SIMTech

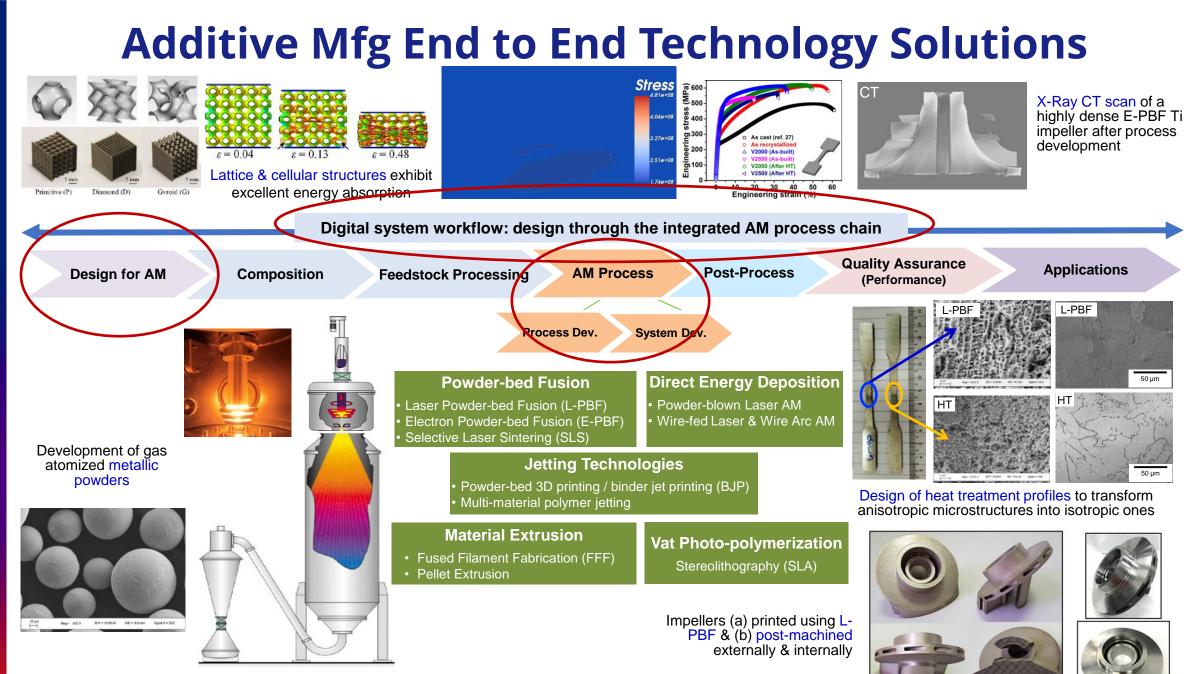
INNOVATION & TECHNOLOGY CONFERENCE 2023

Innovation Through Advanced Manufacturing Research & Technologies

Developing Additive Manufacturing Solutions – From Research to Development and Towards Integrated End-to-End Platform Solutions

Prof David Rosen Principal Research Scientist Institute for High Performance Computing

and SIMTech, A*STAR



Singapore Institute of Manufacturing Technology SIMTech

DEVELOPING ADDITIVE MANUFACTURING SOLUTIONS – FROM RESEARCH TO DEVELOPMENT AND TOWARDS INTEGRATED END-TO-END PLATFORM SOLUTIONS

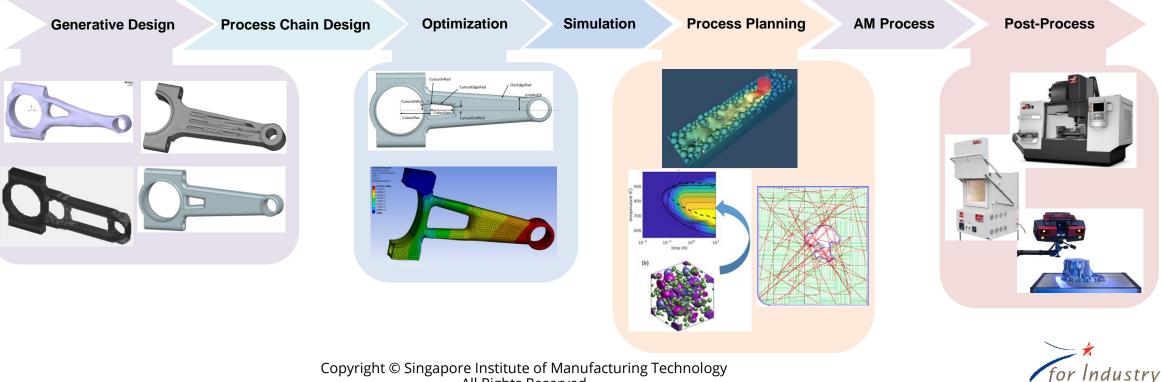
Prof. David Rosen, SIMTech & IHPC

01001

*

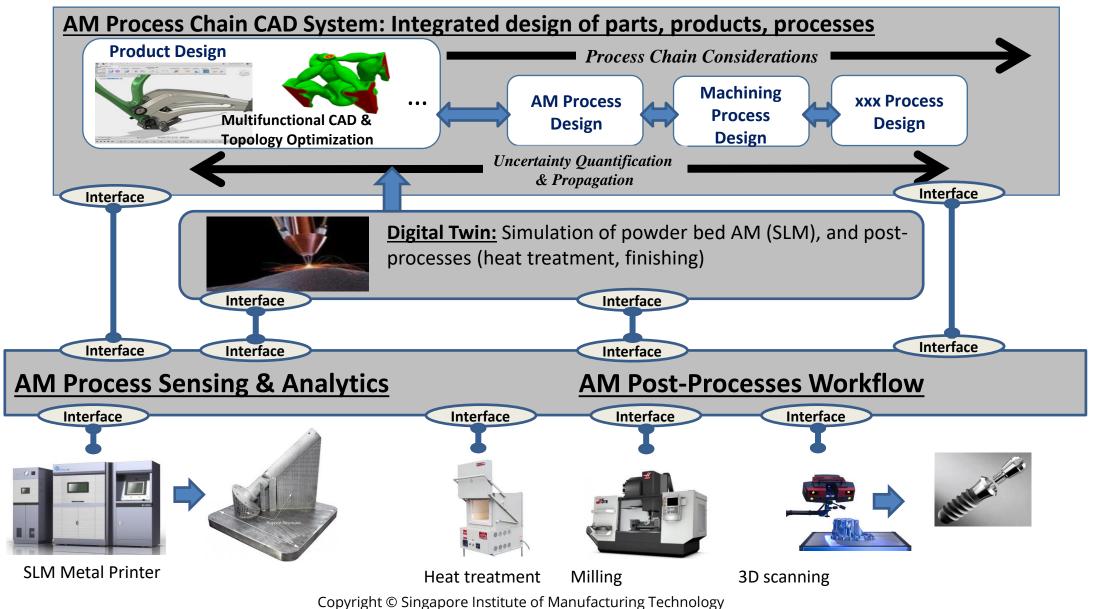
ADDITIVE MANUFACTURING DESIGN & SIMULATION

(100)


Proposed Digital Workflow

Digital system workflow: design through the integrated AM process chain

🕐 Process Chain Map							
Eie Edit View Insert Jools		Help					
4 3 8 6 6 6 6							
<message appears="" here<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></message>							
Reorder Done							
Add Process: PrivilenthedPusion	Order 1	Order 2	Order 3	Order 4	Order 5	Order 6	
Connecting Rod	PowderBedFusion	Depowder	Aging	SupportRemoval	BeadBlasting	FinishMachining	Achieved?
Near Net Shape	Y						Y
Material MaragingSteel300	Y						Y
Feature InternalChannel		Y					Y
ElasticModulus 184.5 GPa			Y				Y
YieldStrength 1900 MPa			Y				Y
SurfaceFinish 4 micron					Y		Y
SurfaceFinish 0.05 micron						Y	Y
SurfaceFinish 0.05 micron						Y	Y
SupportStructure Present				Y			×



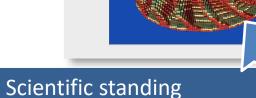
(1001) 1001)

Unified Design & Digital Manufacturing System

All Rights Reserved

01001

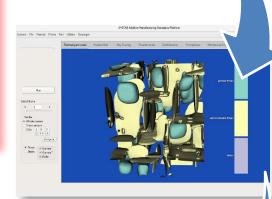
×

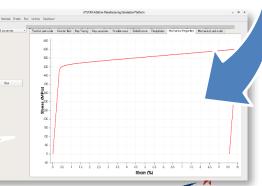

Powder Bed Fusion Simulation

) ***

IHPC's 'Digital Twin' is a high-fidelity, physics-based software which simulates, models and predicts the industrial additive manufacturing process

Value capture

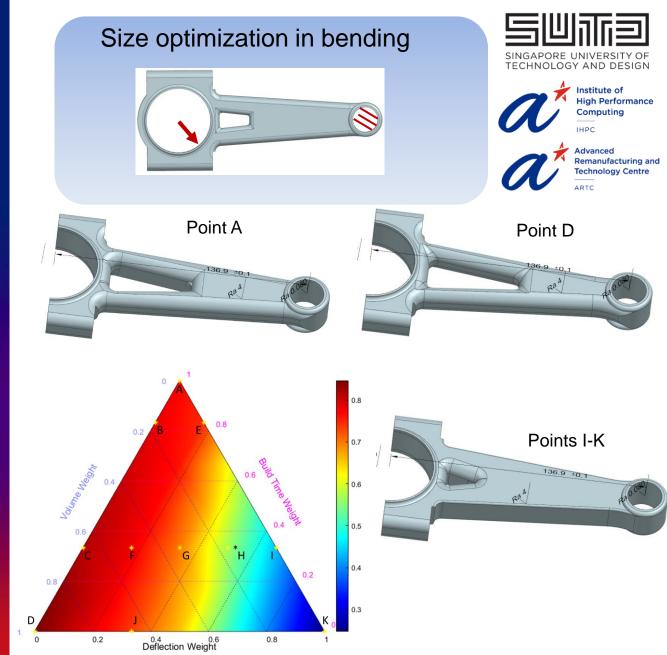

- In-house code gives freedom to customize to specific needs and maintains confidentiality
- Truly integrated multiscale platform gives information at the part scale as well as at the powder scale at the same time
- Advanced model of powder gives information on porosity, microstructure, and mechanical properties
- Available for powder-bed fusion, powderblown (LAAM), and wire-feed processes



Capabilities

stres

- L. Lu, N. Sridhar, Y.-W. Zhang, Acta Mat. 144 (2017)
- G. Vastola and Y.-W. Zhang, Additive Manuf. 22 (2018)
- Jakub Mikula et.al., Smart Materials and Structures 27 (2018)



Institute of High Performant Computing

Design Optimization with as-Manufactured Properties

(1001) 1001

*

CREATING GROWTH, ENHANCING LIVES

<image>

On-Demand Manufacturing of Spare Parts

3D printed manifold Source: Mercedes Benz

Problem Statement:

- Premature failure of critical components or obsolete parts can result in unplanned down times.
- Spare parts replacements can be difficult to source or are only available with long lead times at high cost due to lean inventory for end-of-life products.
- 3D printing enables opportunities to fabricate spare parts on-demand, without requiring physical warehousing of these replacement parts.
- However, 3D printed spare-part may not be a direct drop-in replacement & will require further refinement to match performance of original part.

Value:

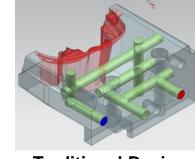
- Translation of functional performance requirements for replacement part into quantifiable technical specifications in 3D printing domain.
- Rectified 3D printing challenges that cause distorted geometry in critical features through in-house expertise in design for Additive Manufacturing with CFD verification, laser process parameter and print strategy optimization, and thermal distortion modelling and compensation tools.
- An actual functional part was fabricated, and further verified to meet all dimensional and surface quality requirements using an **in-house developed inspection regime** for 3D printed components.

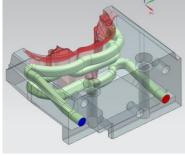
Industry Impact:

- Increased confidence in using 3D printing for **producing performance-conforming spare parts** in critical applications.
- Successful **deployment of end-to-end workflows** enable industry to adopt on-demand manufacturing of spare parts using 3D printing as a practical solution.
- **Digital warehousing** through 3D printing can be used to shorten the supply chain and reduce overhead storage costs.

*

Adaptation for Additive Manufacturing vs Design for Additive Manufacturing (AfAM vs DfAM)


AfAM (Restrictive DFM)

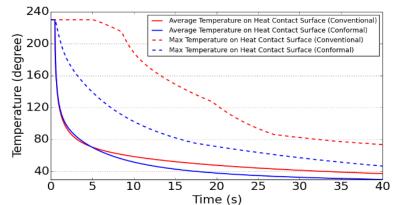

• Adaptation for AM would typically start with a design where the part has been defined adhering to the form/fit/function.

AfAM

Restrictions

- Rules of Additive Manufacturing will only be applied for manufacturability.
- Limited benefits derived from using AM

Traditional Design (AfAM)

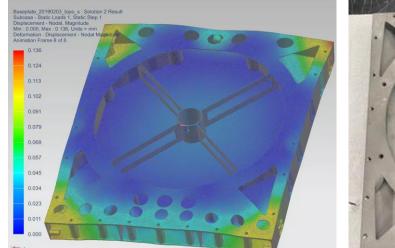

DfAM

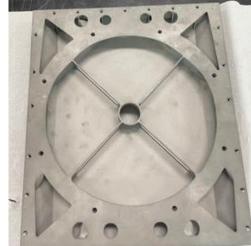
Capture

Design Autonomy (DfAM)

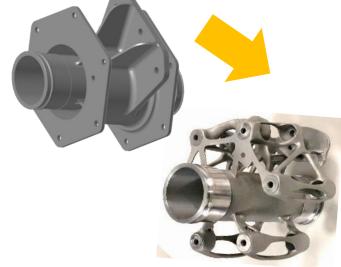
AM printed insert

DfAM (Opportunistic DFM)

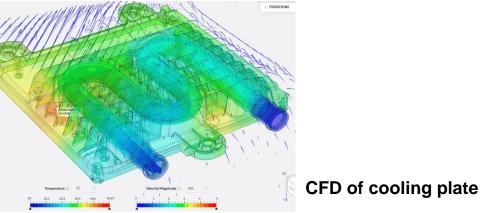

- Total freedom of Redesign for AM.
- Design for part consolidation.
- Harness the full benefits of AM. Through Redesign.
- Topology and topographical optimized.

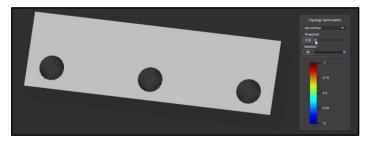


- Breaking the traditional DFM and at the same time complimenting traditional manufacturing.
- Designing for functional, process and purpose specific.
- Taking into consideration for AM's post process requirements
- Value engineering- cost, performance benefits, etc


DfAM-AM Simulation (CFD/FEM/Topo)

With DfAM & using tools like CFD/FEM/Topo, design freedom allows engineers to harness AM / Non-AM manufacturing technique to the fullest.





FEM of a satellite base (30+ parts into 1) – launching in 2nd half 2023

Lightweight metallic component designed for AM and fabricated using LPBF.

Light weighting (Topo-optimization)

Copyright © Singapore Institute of Manufacturing Technology All Rights Reserved

(1001) 1001

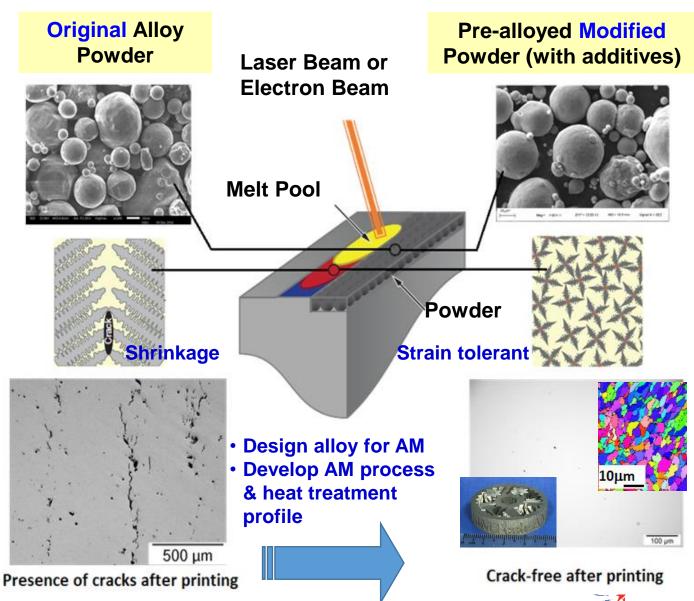
ADDITIVE MANUFACTURING PROCESS DEVELOPMENT

6100

 (\mathbf{O})

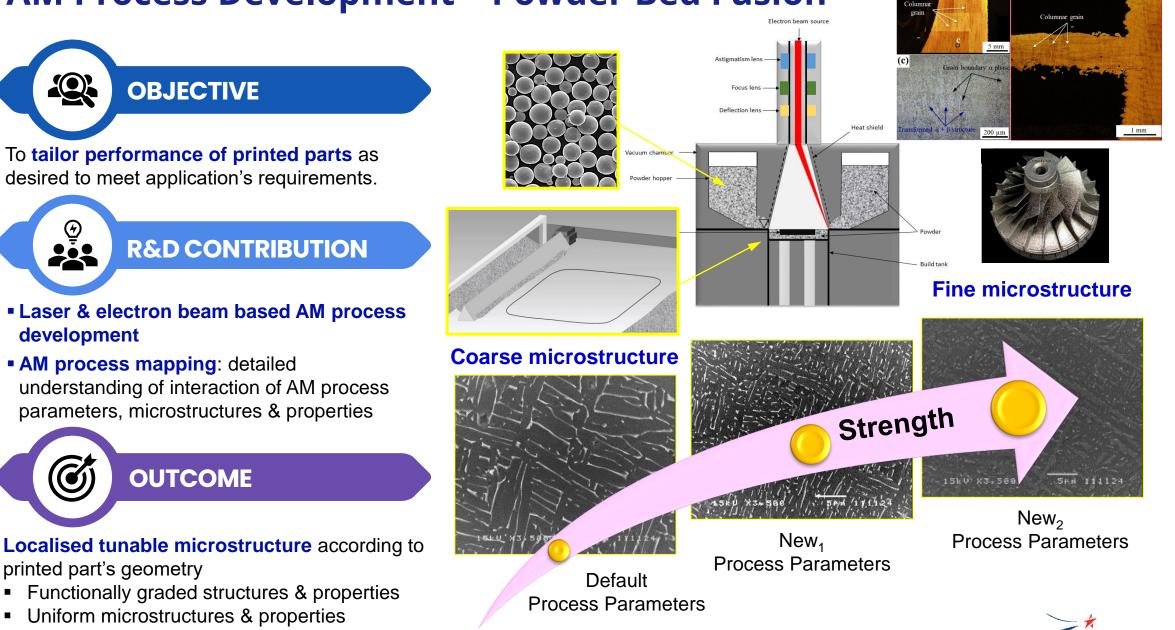
Feedstock Development – Powder

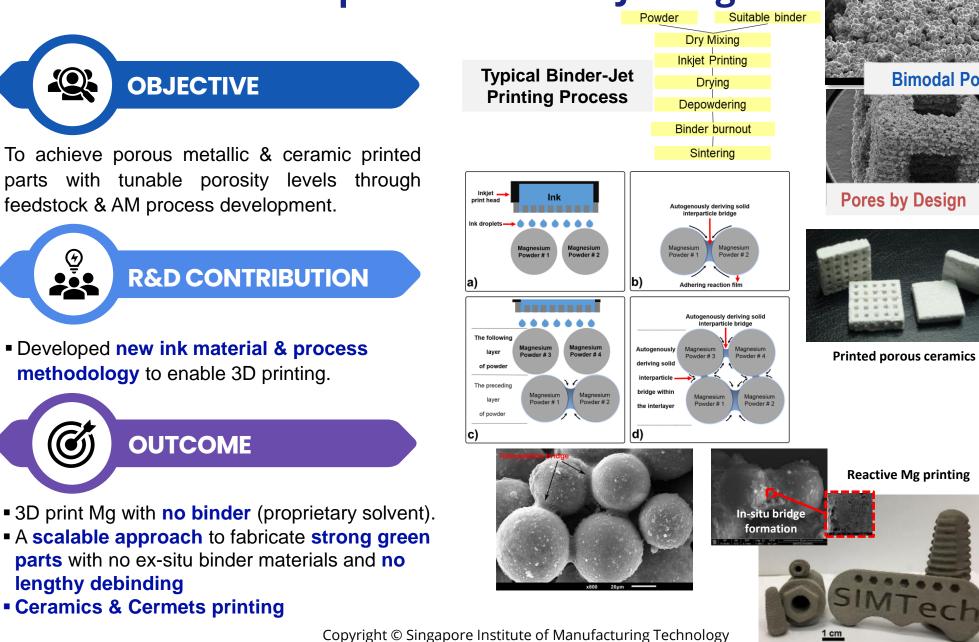
OBJECTIVE

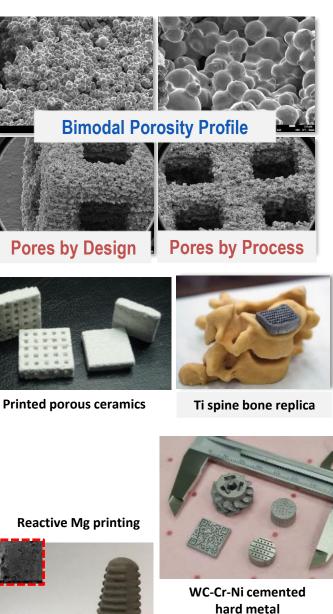

To develop **new class of alloys & composite materials**, specifically for AM, take advantage of faster cooling rates & unique processing conditions used during AM.

R&D CONTRIBUTION

Design alloy for AM: select suitable additives to modify chemical composition of base alloy


- Introduce lattice-matched elements to act as nucleation sites to control solidification microstructure
- Small batch production of powder feedstock using A*STAR gas atomizer

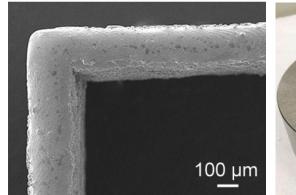



AM Process Development – Powder Bed Fusion

All Rights Reserved

01001

Powder-bed Micro Selective Laser Melting System

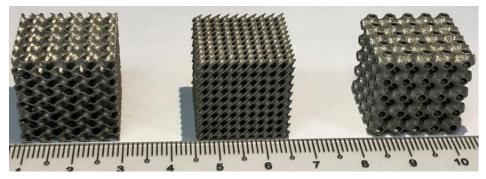

Fine features printing

Material development & research

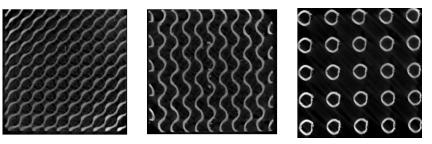
honeycomb structure 500 µm

Technical Specifications

Country Building Volume Recoater Type Recoating Direction Chamber gas Laser type / spot size As-Print surface roughness Singapore Ø120 x 100mm Silicone One-way Argon / Nitrogen 100W, 15µm 5 ~ 25µm Ra



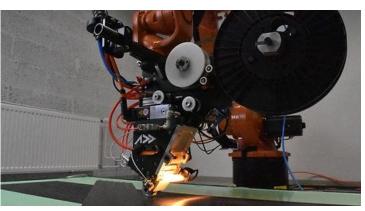
Thin walls



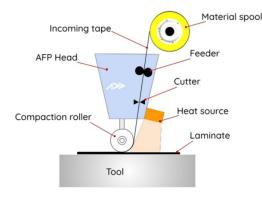
Lattice Structures

for Industry

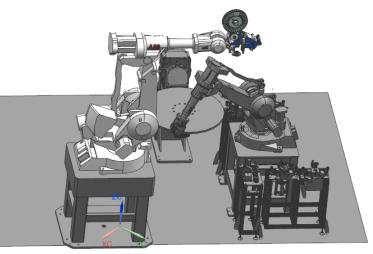
As-Printed Lattices



X-ray Computed Tomography



Large Format Polymer Composites Printing


- Develop a large-format material extruder polymer with dynamic mixing and continuous Carbon-Fiber Reinforced ThermoPlastics (CFRTP) via Automated Fiber Placement (AFP) printing capabilities
- Build envelop:
 - 2000 x 1000 x 1000mm; expandable in the future
- Materials:
 - Thermoplastic: ABS, Nylon, PLA, PA6 (AFP), PEEK (AFP)
 - Thermosets

Automated Fiber Placement (AFP)

Working Principles of AFP

Large Format Composites Robotic Cell

Applications

Copyright © Singapore Institute of Manufacturing Technology All Rights Reserved

Additive Manufacturing for Industry through Strategic Partnerships

(1001) 1001

> Novel product design / new process & material

voestalpine ONE STEP AHEAD.

HALLIBURTON

PALL CORPORATION

Copyright © Singapore Institute of Manufacturing Technology All Rights Reserved

Entegris

Osteo pore

PROTERIAL

Technology enablers

DMG MORI

SIEMENS

ADDITIVE MANUFACTURING FUTURE DIRECTIONS

(100)

Copyright © Singapore Institute of Manufacturing Technology All Rights Reserved

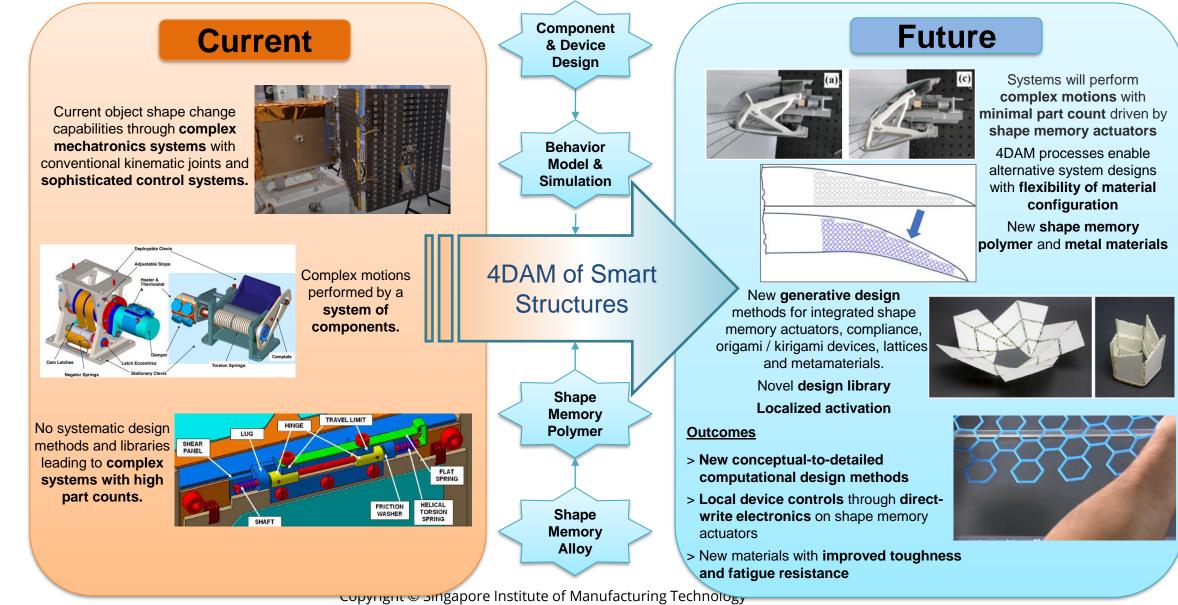
Proposed Digital Workflow

Digital system workflow: design through the integrated AM process chain 4 3 4 4 4 4 4 Stress 27e+08 2.51e+08 1.74e+08 **Process Planning Generative Design** Process Chain Design Optimization Simulation **AM Process Post-Process** 5323x-0 44008x-3 43902x-1 5405x-3 2,205x-3 1,205x-3 1,205x-3 4,2055x-4 6246

try

(1001) 1001)

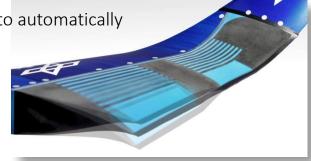
*


Future Directions

- 4D printing
- Generative design of complex devices and metamaterials
- Cybermanufacturing

4D Printing

All Rights Reserved

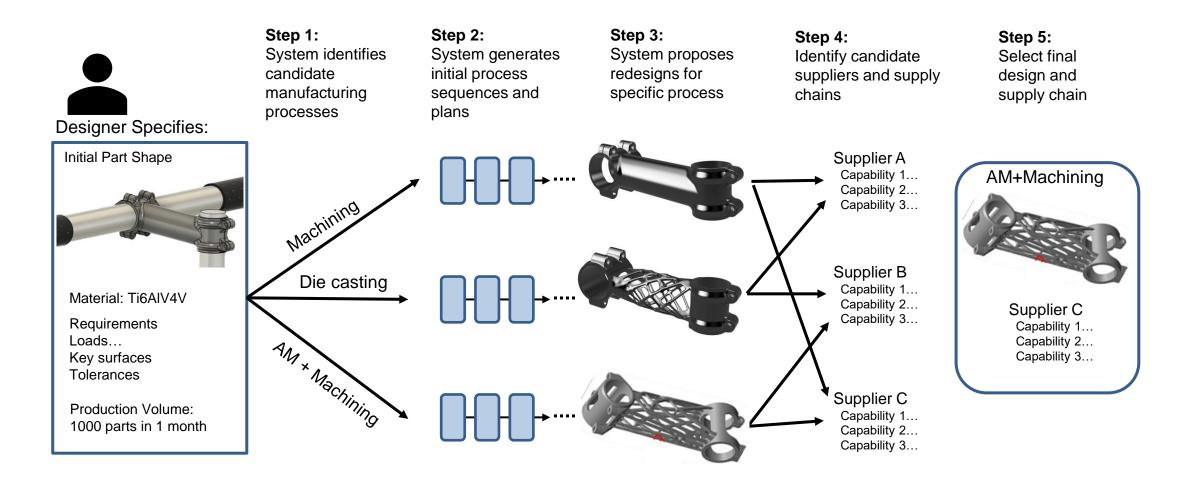


Generative Design

"The flying car has a body that is similar in shape to pterodactyls, with a body designed to control drag, lift, and thrust. It is lightweight and has a propeller to generate thrust. The vehicle's hull is constructed of high-performance carbon fiber, inspired by the lightweight skeletons of pterosaurs.

Morphing wings, via 4DP, to automatically optimize lift and drag

Generated designs



Cybermanufacturing

 $\begin{array}{l} \mbox{Copyright} \ \mbox{\ensuremath{\mathbb{C}}} \ \mbox{Singapore Institute of Manufacturing Technology} \\ \mbox{All Rights Reserved} \end{array}$

Closure

- Integrated additive manufacturing at SIMTech, ARTC, and IHPC
 - Overview and capabilities
 - Industry collaboration examples
- Design for AM and simulation of AM
 - Design across the AM process chain
 - AM process simulation
 - Design with as-manufactured properties
- Future directions
 - Generative design
 - Cybermanufacturing
 - 4D printing

Singapore Institute of Manufacturing

THANK YOU

www.a-star.edu.sg

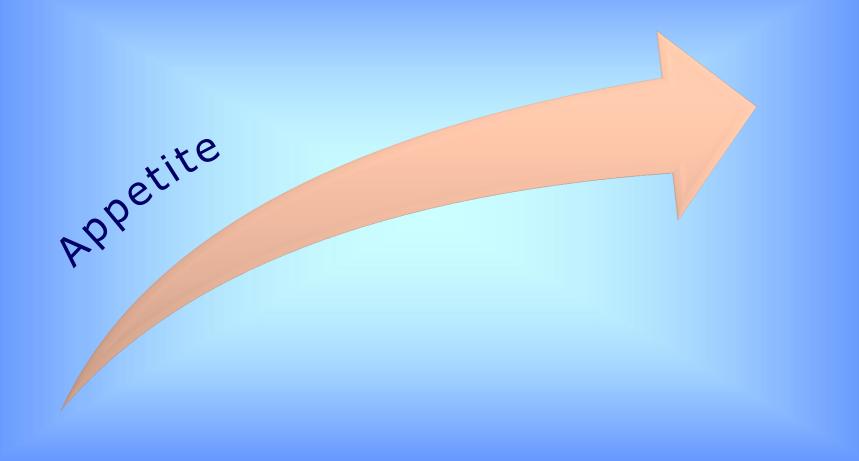
Dr David Rosen rosendw@ihpc.a-star.edu.sg

Dr Sharon Nai mlnai@simtech.a-star.edu.sg

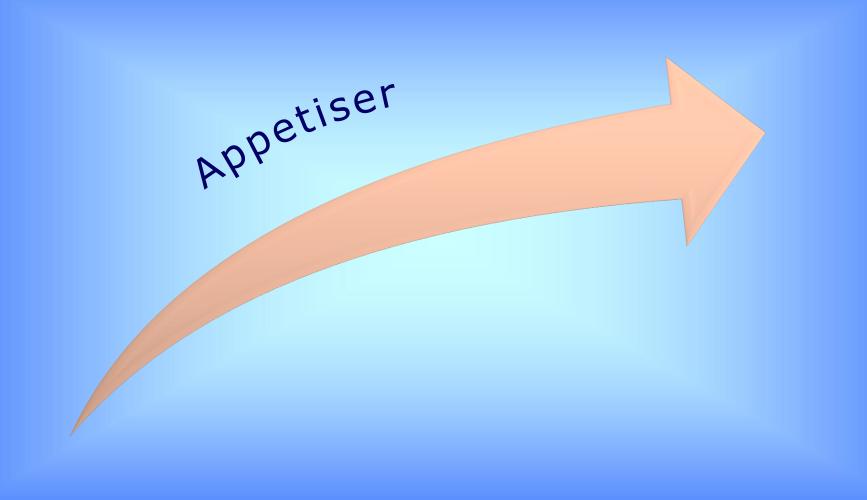
INNOVATION & TECHNOLOGY

CONFERENCE 2023 Innovation Through Advanced Manufacturing Research & Technologies

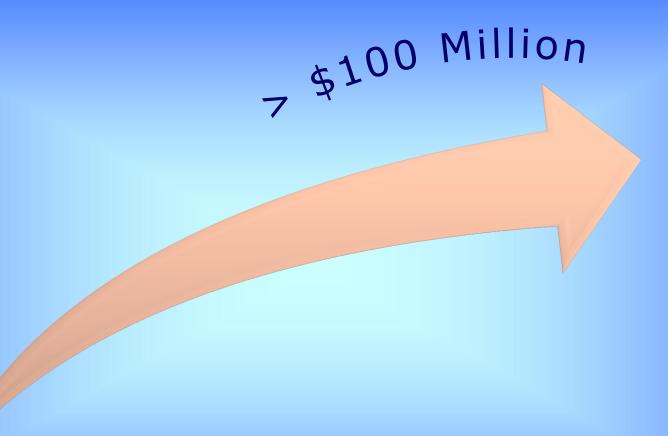
Supplier Capability Development for Localisation of Aircraft Interior Parts


Mr Sito Wai Seng Senior Manager, Technical Services SIA

00


Innovation & Technology Conference 2023

Innovation Through Advanced Manufacturing Research & Technologies



\$100 Million

To reach the stars, we must Dream as well as Act

Appetising

To reach the stars, we must Dream as well as Act The best way to predict our future is to create it ourselves

To reach the stars, we must Dream as well as Act The best way to predict our future is to create it ourselves

Think about the Stars & we will land at least among the clouds

Innovation Through Advanced Manufacturing Research & Technologies

The best way to predict our future is to create it ourselves Think about the Stars & we will land at least among the clouds

Innovation & Technology Conference 2023

SIA started working with SIMTech on small cabin projects about 10 years ago

Challenges Faced Initially

- Correction of the second se
- Able to design & manufacture complex parts
- Lack of knowledge on aviation regulations & requirements
- No aviation DOA & POA approval

	LAS Sena No. 197	
Design Org	anisation Approval	
NO. AV	WI/DOA/005	
This approval is issued pursuant to		
Singapo		
(Technical Se 09-B AI 25 AII SING/		
as a disign organisation, and shall remain valid for the period of validity unless ration superioded or revolved.		
Period of Validity: 01 June 2016 to 31 May 2017		
This approval is granned subject to d		
 The approval holder shall comply approved design organisation exp REV 9. 		
 The approval holder shall engage rumperium, materials and/or pre- accordance with the scope of woo organisation exposition document 		
 The approval bodder shall carry out the activities only at the Haadquarter and Satellite locations specified in the Approval Schedule. 		
	Autor and	
Duer of Issue + 18 May 2016 killel Isrue + 14 Jane 2006	for Discover General Croll Aviation Authority of Singapore	
Havidon No 1 0	Page 1012	

	Transport Airplane Directorate Van Noys Manufacturing Inspector Dwitch Office	
 Department Francostation 	7120 Hayvenhurat Avenue Sute 100 Van Nays, Celifornia, 81406-3823	
ederal Aviation		
Administration		
June 11, 2009		
CLIPCED		
CAPSED 17012 Roper Street		
Mojave, ČA 93501		
FEDERAL AVIATION ADMINISTRATION -	PARTS MANUFACTURER APPROVAL	
In accordance with Title 14, Code of Federal Re		
Procedures for Products and Parts, subpart K, th submitted by CAPSED (hereinafter referred to a	e FAA has found that the design data, as	
meets the airworthiness requirements of 14 CFR	arnlicable to the readuct(s) on which the	
part(s) is to be installed. Additionally, the FAA	has determined that the Manufacturer has	
established the fabrication inspection system (FI		
Street Mojave, CA 93501. Accordingly, Parts h granted to the Manufacturer to produce the repli-	danulacturer Approval (PMA) is hereby	
applicable) listed in the enclosed supplement(s)		
design data. Subsequent changes to these design	a data must be approved in a manner	
acceptable to the FAA.		
The following terms and conditions apply to this	s approval:	
	dures, and manufacturing facilities, including	
suppliers are subject to FAA surveillances. a suppliers that their facilities are also subject	Accordingly, the Manufacturer must advise its	
suppliers that their factities are also subject	to FAR survemance and investigations.	
2. The Manufacturer must notify the Van N	uys Inspection Manufacturing District Office	
	from the date the manufacturing facilities, at or expanded, to include additional facilities, at	
other locations. This requirement also applie	s to the Manufacturer's suppliers with major	
	who furnish parts or related services where a	
determination of safety and conformance to made upon receipt at the approved receiving		
3. Upon request, the Manufacturer must mi	ke available to the FAA any pertinent	
information concerning their suppliers who	furnish parts/services. This includes:	
a. A description of the part or servi-	20;	

DOA = Design Organisation Approval POA = Production Organisation Approval

CAAS

Production Organisation Approval

NO. AWI/POA/007

SIA Engineering Company

31 AIRLINE ROAD

SENGAPORE 819831

as a production organisation, and shall eronian valid for the period of validity unless earlier suppended or revolued. Period of Validity: **01 May 2016 to 30 April 2017** his semural is eranned subject to the following conditions:

 The approval holder shall comply with the procedures specified in its lates approved production organisation exposition document (Ref.

2. The approval holder shall engage in the production of the aircraft, aircraft

components, materials and/or products specified in the Approval Scholule and capability list, in accordance with the scope of work (or equivalent) in its attest approved production organisation exposition document. The approval holder shall carry our the activities only at the Headquarter and

agraph 8 of the Air Navigation Onde

Seat Certification Requirements

14 CFR 25.562^{*}

- Emergency landing 16gDynamic Load Conditions
- Head Impact Criteria

*CFR = Code of Federal Regulations

Seat Certification Requirements

14 CFR 25.562^{*}

- Emergency landing 16gDynamic Load Conditions
- Head Impact Criteria

*CFR = Code of Federal Regulations

Seat Certification Requirements

Cabin Materials F2 Flammability Test

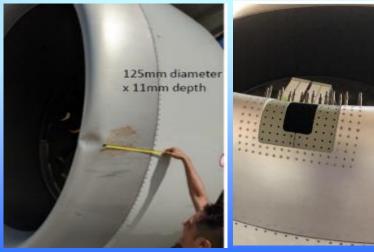
- Comply with FAA & EASA Requirements
- Burn it for 12 secs
- Burn length < 8"</p>
- Extinguishes itself within 15 secs
- Must not drip > 5 secs

Vision

- Opscale Local Design & Manufacturing Cap
 Opscale Local
- Rescale Singapore's landscape & Aerospace Map
- Scale up Local Fab
- Timescale our Joint Lab

Integrate to Collaborate

J



Collaborate to Accelerate

Collaborate to Accelerate

- Launched end July 2019
- Expertise expanded beyond manufacturing to design of new seats
- Workscope elevated from cabin to aircraft parts
- Achieved Production Organisation Approval
- A Horizon broadened from design & manufacturing to new technology applications
- Collaboration extended to other A*Star Research Institutes (IMRE, IBB, I²R & IHPC)

Thrust Reverser Fire Seal Engine Inlet Cowl Lip Repair Anti-microbial Coating

JL Re-engineered Components

SIA*SIMTech*SIAEC Joint Lab

EY Shroud Support

JCL Arm Pad

Sanitiser Holders (3D Printed and Injection Moulded)

JCL Cocktail Tray

EY Escutcheon

EY Cup Holder

Galley Wall Clip

EY Cup Holder

EY Safety Shield

00028

JCL Tambour Door

JCL Meal Table Top

PEY Lit Cover

EY Armcap

EY Inner Armcap

B737 Outer Armcap

JCL Back Shell

JCL Life Vest Cover

A350 EY Armcap

B787 EY Armcap

Meal Table Bumper

Galley Fitting Cover

JCL Lateral Panel

EY Spreader Shroud

Accelerate to Innovate

0 0

Accelerate to Innovate

- Able to accelerate innovation at short notice
- Create with close integration & strong collaboration
- In tandem with SIMTech's innovation
- Build a solid foundation

Innovation Through Advanced Manufacturing Research & Technologies

Accelerate to Innovate

Restaurant A380@ Changi

Runaway success near Changi runway

Automated sanitiser dispenser holders

Comparison of the step of t

manufactured & installed in 3 weeks

SIA*SIMTech*SIAEC Joint Lab

Accelerate to Innovate

- Consign optimised with modelling CREO
- Analysed with FE Analysis & Simulation
- Validated to withstand > 20Kg abuse load
- General Content of Conten

Accelerate to Innovate

- Success catapulted to all SIA fleets
- Osed Injection Moulding instead of 3DP
 Osed Injection Moulding instead
 Osed Injection
 Osed
 Os
- Certified with SIMTech's POA

SIA*SIMTech*SIAEC Joint Lab

Accelerate to Innovate

All completed within 2 months

SIMTech' s POA help develop SMEs

Strengthens local cabin design &

manufacturing value chain

Innovate to Create

0 0

and damage

Innovate to Create

- Local talents in design & manufacturing of aircraft cabin components
- Opportunities for SMEs to upskill, reskill & scale up the value chain
- A R&D Centre of Excellence for cabin design & manufacturing
- Develop & implement new technology & applications in aircraft
- An effective & efficient manufacturing ecosystem in Singapore, by Singapore, for Singapore & beyond

Create to Differentiate

->-<

THANK YOU

FOR MAKING US THE WORLD'S MOST AWARDED AIRLINE

SINGAPORE AIRLINES

SIA*SIAEC*SIMTech Joint Lab

Develop Local Ecosystem for Manufacturing of Aircraft Cabin Components

Work under SIAEC/SIMTech's Quality System

< \$10M

Time

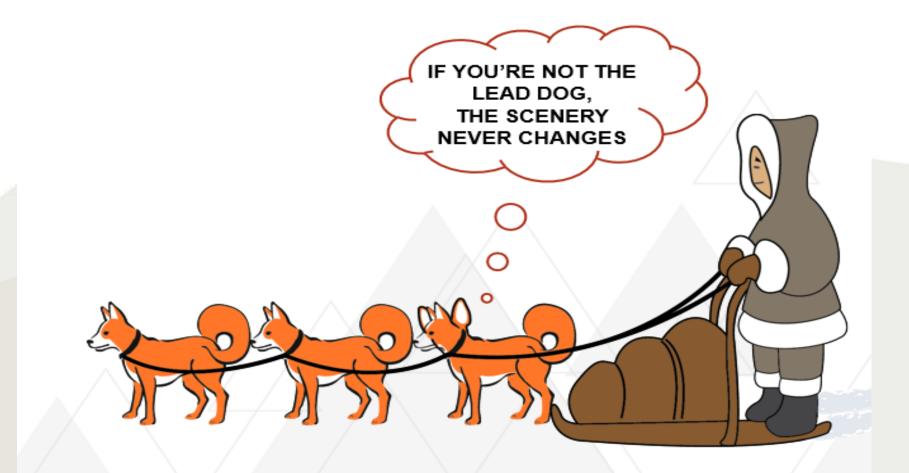
7he Beginnings

INNOVATION & TECHNOLOGY

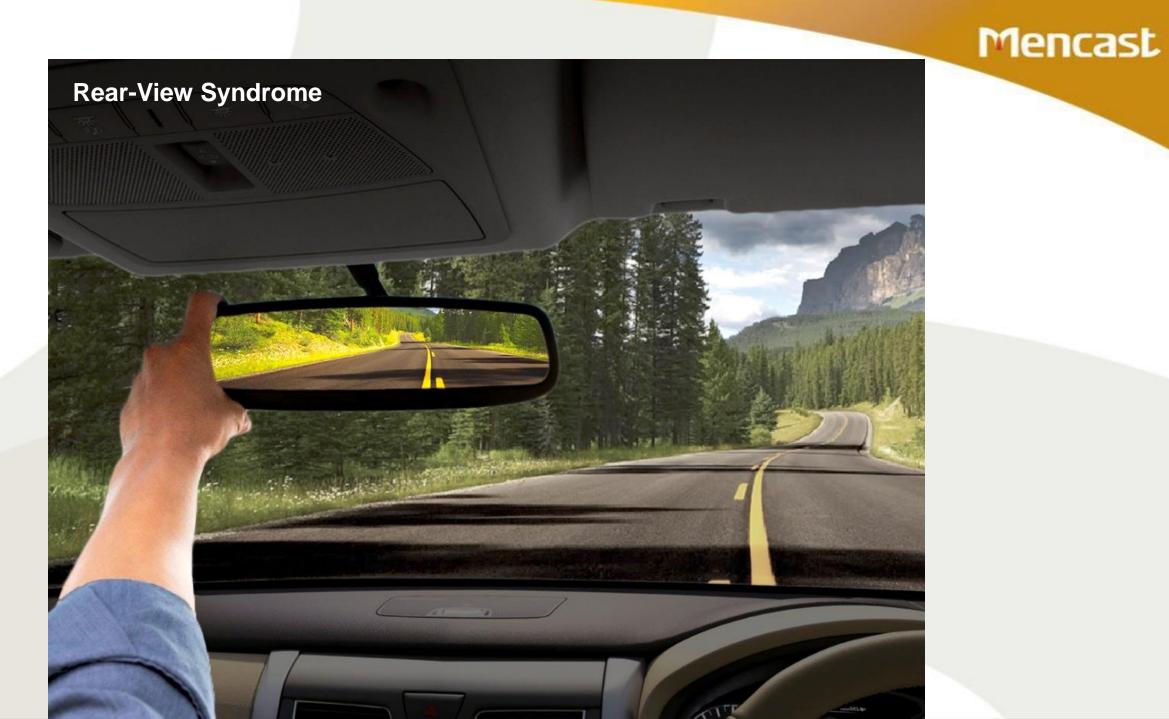
CONFERENCE 2023 Innovation Through Advanced Manufacturing Research & Technologies

Transforming from MRO Provider to a Global Leader in Marine Propellers

Mr Glenndle Sim Executive Chairman and Chief Executive Officer Mencast

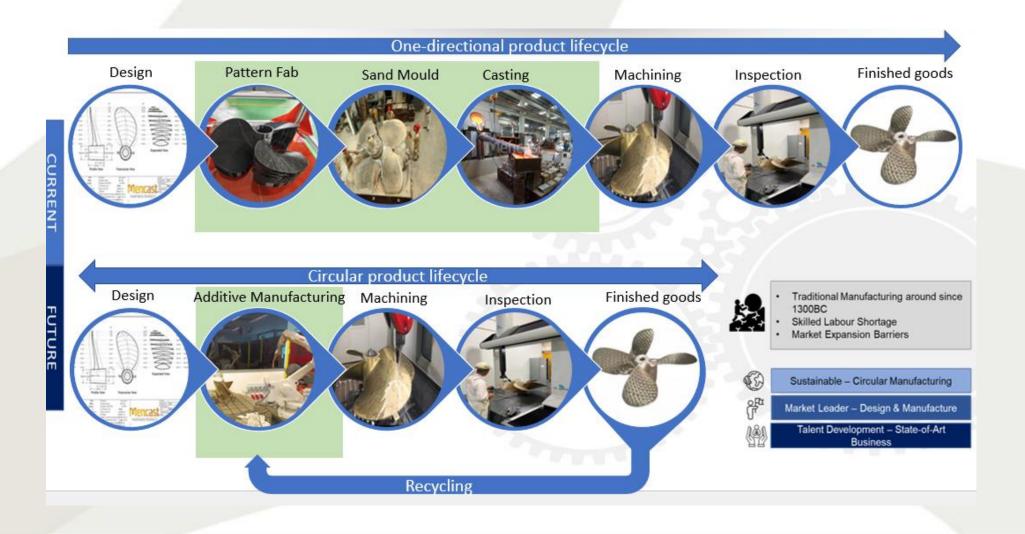

00

PARTNER PERFECT

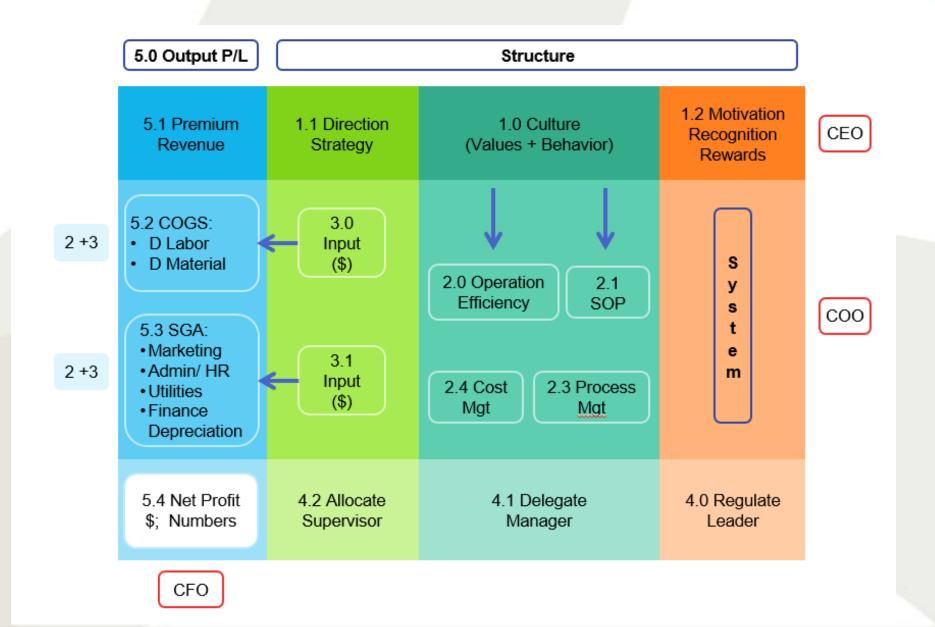

SIMTech Innovation & Tech Conference 2023 26TH JULY 2023 GLENNDLE SIM EXECUTIVE CHAIRMAN AND CHIEF EXECUTIVE OFFICER MENCAST HOLDINGS LTD

Building Businesses in Turbulent Times A Journey-Not a Destination

Are you leading into familiar or unfamiliar territory?


Our Minds Must Be Like Parachute,

It Can Only Function When It's Open.



Mencast

Transformation: Mencast's Journey towards Propeller Market Leader equipped with Advanced, Innovative, and Greener State-of-Art Manufacturing

Mencast

"The Cave You Fear To Enter, Holds The Treasures You Seek"

Joseph Campbell

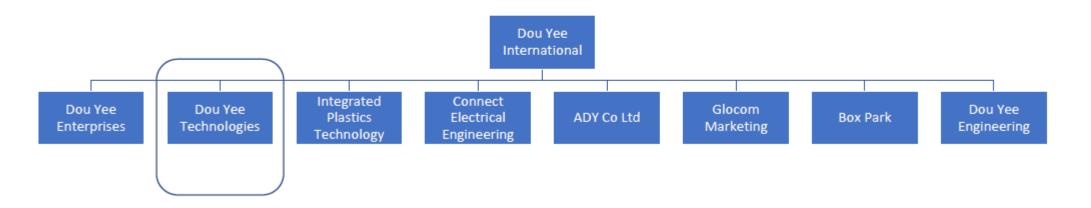
INNOVATION & TECHNOLOGY

CONFERENCE 2023 Innovation Through Advanced Manufacturing Research & Technologies

Enabling Precision Engineering from Development of Advanced Powder Metallurgy Manufacturing

Mr Chen Li Engineering Director Dou Yee Technologies

000


Enabling Precision Engineering from Development of Advanced Powder Metallurgy Manufacturing

Chen Li

Director Engineering Dou Yee Technologies

DYI Group Corporate Structure

- * Vision : 'Global Industrial Solutions Provider'
 - From electronic, electrical industries to home appliance, personal & industrial space solutions
 - ✓ From manufacturing, trading to engineering solutions for direct materials

- DY Group is the world's market leader :
 - ✓ Leading supplier of ESD and related materials for the Electronics (DYES Group).
 - ✓ Leading manufacturer of carrier tapes (C-Pak Group).
 - ✓ One of the largest independent Metal Injection Molding Company (DYT).
 - ✓ One of the few manufacturers of capillaries (DYT).

About Us

- Incorporated
- Core Business

- Capital investment at Cost
- Awards
- QMS Certification

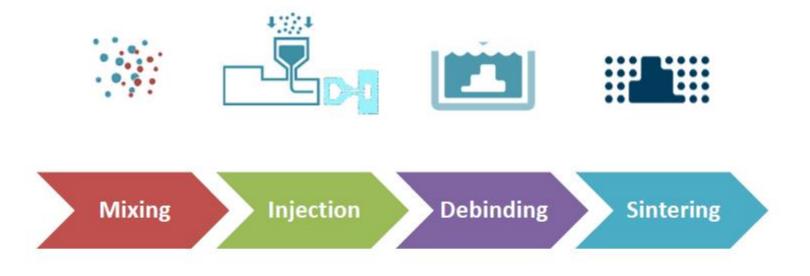
April 1996

Delivering Complex Components & Sub-Assemblies thru Metal Injection Molding, Ceramic Injection Molding, Engineering plastic injection molding & Assembly services

S\$ 67 Mil

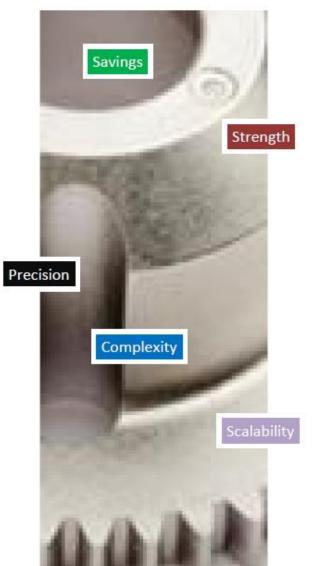
Development Expansion Incentive by Economic Development Board of Singapore

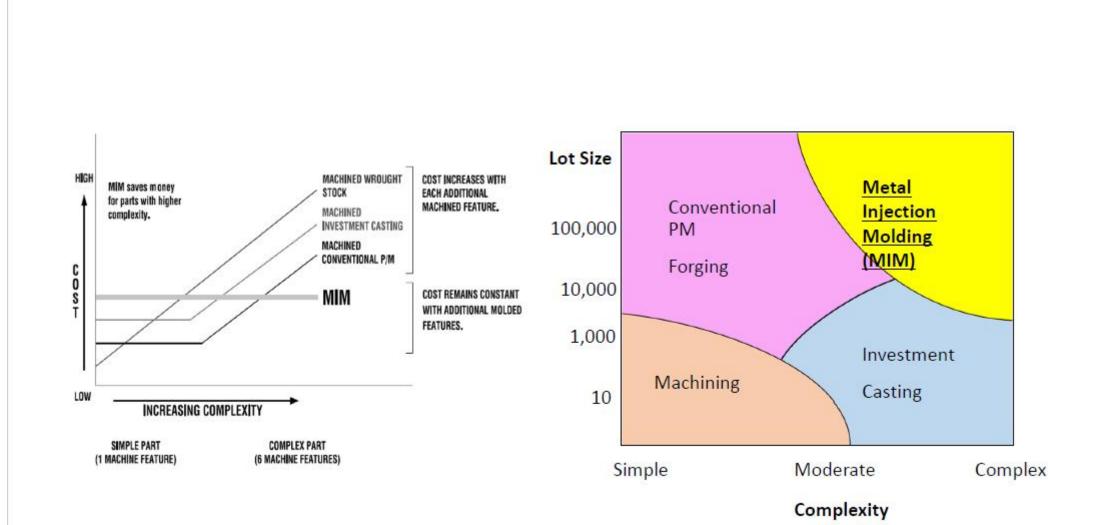
ISO 9001 : 2015 ISO 13485 : 2016 IATF 16949 : 2016



20,000 sq ft Manufacturing Area

MIM Process - Overview




Why MIM?

- Net-shape approach to component fabrication
- Cost-effective for moderate to high volumes
- Excels at applications that require complexity and material properties
- Ability to produce metal geometries <u>without</u> machining
- Ability to combine multiple parts into one single part.

Selection of Suitable Mfg Process

MIM Materials Portfolio

Typical Mechanical Properties of MIM Alloys

Materials	Grades	Density (g/cm ³)	Hardness
	<u>17-4 PH</u>	7.60	35 – 40 HRC
Stainless Steels	<u>304L</u>	7.80	120 HV
	High C-314	7.65	180 HV
	<u>316L</u>	7.85	120 HV
	<u>317L</u>	7.85	120 HV
	420	7.40	45 – 50 HRC
	<u>440C</u>	7.50	55 – 58 HRC
-	<u>HK-30</u>	7.55	200 HV
-	1.4957	7.65	140 HV
-	Panacea	7.60	290 HV
Case Hardened Steels	2200	7.50	500 – 600 HV
	2700	7.60	500 - 600 HV
	8620	7.40	800 HV
Hardened & Tempered	FeNi8	7.50	400 HV
Steels	4140	7.50	42 – 48 HRC
Controlled Expansion	Alloy 42	7.55	110 HV
Alloys	F-15 (Kovar)	7.70	65 HRB
Soft Magnetic Alloy	FeSi3	7.50	75 HRB
Cobalt-Chromium Alloys	F75	8.00	225 HV
NI-Fe-Mo Alloy	Fe80Ni4Mo	8.40	290 HV
Ni-Cr Superalloy	Inconel 713C	7.80	290 HV
Tungsten Alloy	W95NiFe	17.5	25 HRC

CIM Materials Portfolio

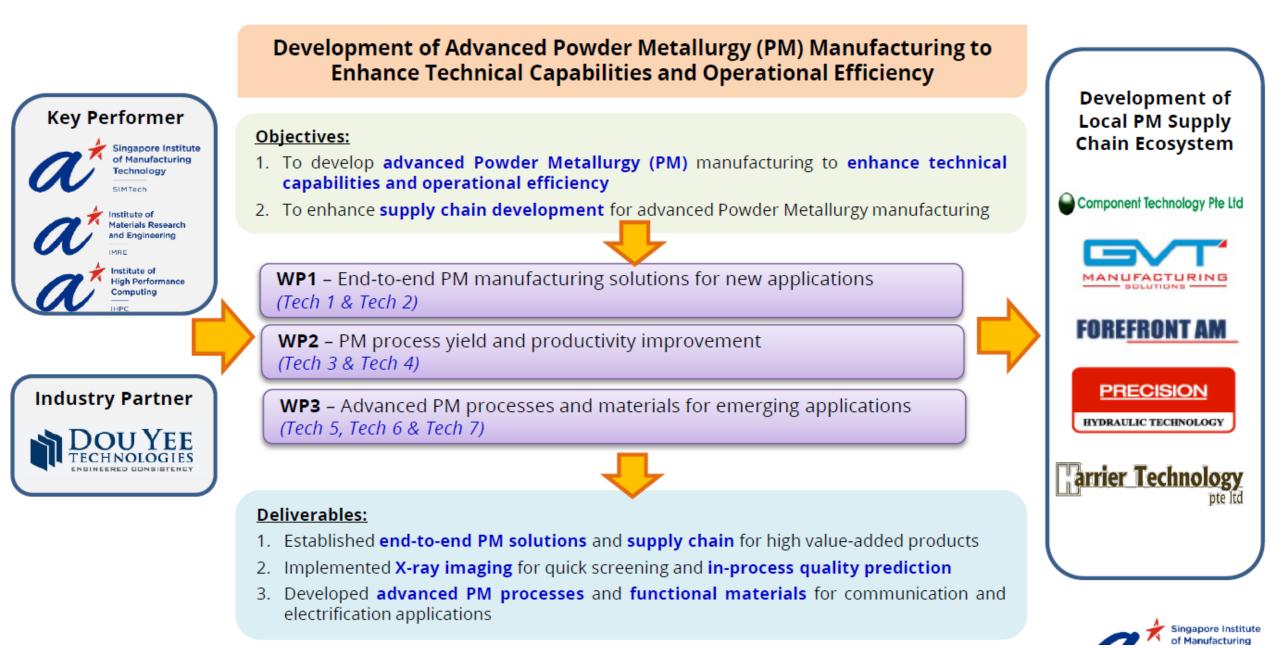
Typical Properties of CIM Materials

Materials		Grain Size (µm)	Density (g/cm³)	Hardness (Hv 300)	Electrical R (Ω-m)	Rupture Strength (MPa)
Pure Alumina	Al ₂ O ₃	<3	3.95	2000	>1013	400
98% Alumina	Al ₂ O ₃	<5	3.88	1900	>1013	275
Zirconia	ZrO ₂	<0.6	6.05	1200	>1012	700
Toughened Alumina	Al ₂ O ₃ +ZrO ₂	<1	4.15	1850	>1013	550
Stabilized Zirconia	ZrO ₂ +Y ₂ O ₃	<0.8	5.55	1350	>1013	900
Tungsten Carbide	WC-10Co	<5	14.2	1900	-	2200
Improved Toughened Alumina	KCR+	<1	4.15	1960	-	600
RUBY	$AI_2O_3 + Cr_2O_3$	<1	4.2	2000	-	650
Translucent Alumina	DYTT-1000	<25	3.95	1880	-	400
Aluminum Nitride	AIN	<5	3.3	1460	-	250

Sector Products Showcase

Equipment Capacity

Description	DYT	DYA	
Molding	52	35	
Solvent DB	8 tanks	1 tank	
Catalytic DB	4	10	
LÖMI Solvent	2	nil	
Thermal Furnaces	19	2	
Batch Furnaces	20	3	
Heat Treatment	1	nil	
TAV Furnace	1	nil	
2-in-1 Combo Furnace	5	12	
Continuous Furnaces	nil	2	
Curtis Twin Vector Grinders	Nil	6	

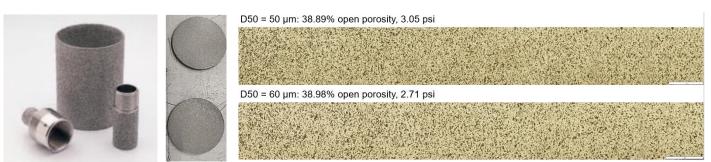


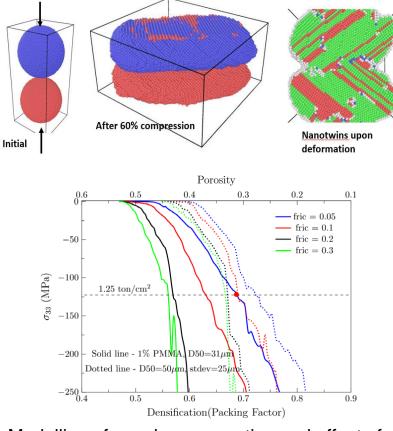
Areas of Strengths

- Medical MIM
 - Established customer base
 - EES, Medtronics, CMR, BD, Aesculap, Neotract, Cooper S
 - Experience including Robotic surgicals > Complex shapes, miniature, precision
- Automotive MIM
 - Expertise in Vanes
 - High temperature materials HK30, Inconel, 1.4957
 - Growing customer base Cooper Std, BMTS, Sensata, Garett > Fonatec, Cummins
- CIM Alumina & Zirconia
 - Wax formulation > capillaries, insulators, heat shields, washers, seals, pistons
- Multi-site
 - Singapore, Malaysia & China > risk mitigation
- Research links
 - Joint Lab with SIMTech > new materials, new processes, innovation
 - NUS collaboration > 3D printing, binder jet AM
- Assembly with automation, in-house machining, HT & finishing capabilities
- Medical device CM

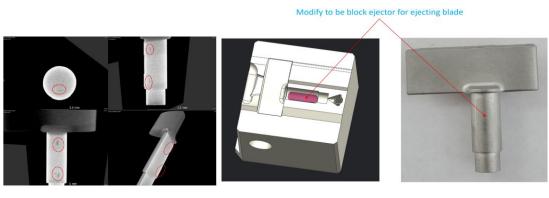
End-to-end PM manufacturing solutions for new applications

- To provide end-to-end advanced powder compaction manufacturing solution for ceramic ring, metallic gear and metallic porous filter.
- To develop a novel computer simulation approach that provides a faster alternative to the conventional trial-and-error method for the powder compaction process

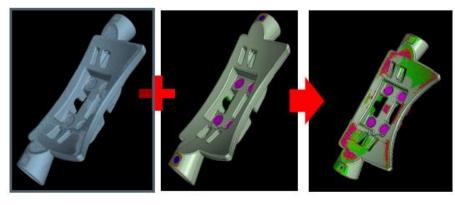

Ceramic ring


Ceramic piston

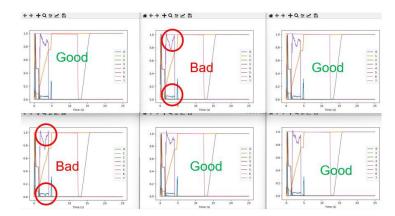
Steel gear


Porous steel with controlled pore size and porosity level

Modelling of powder compaction and effect of different parameters on porous control

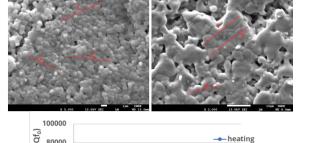

PM process yield and productivity improvement

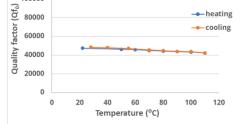
- To establish non-destructive inspection and defect root cause analysis for complex parts by X-ray technique
- To develop neural network based in-process quality monitoring and machine performance analysis for MIM process



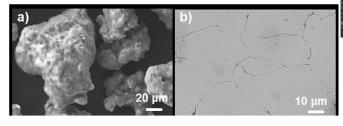
Defect root cause analysis and yield improvement

New product 3D profile analysis

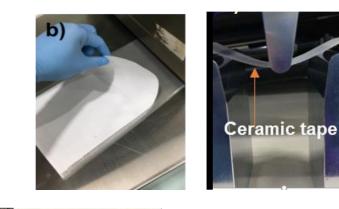

OEE software used at Dou Yee



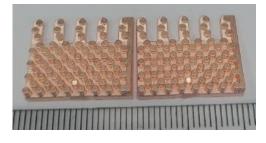
Good and bad quality samples for DB part


Advanced PM processes and materials for emerging applications

- To develop material and processing technologies for high performance ceramic RF filter and soft magnetic composite.
- To develop a new gel-tape casting to produce high value-added thin sheet and multi-layered ceramics for different applications
- To develop material system and processes for reliable mass production of micro-parts/features



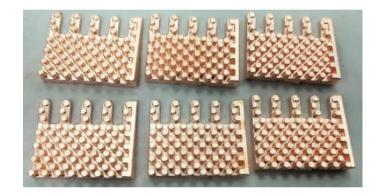
Dielectric ceramics and properties



Soft magnetic composite

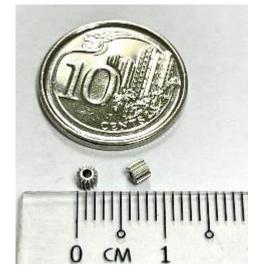
Micro-MIM for small parts and features

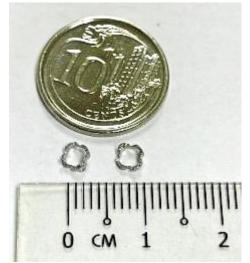
New gel-tape casting and application in ceramic heater



Advantages:

- High electrical conductivity
- Excellent Thermal conductivity
- Good ductility
- Good machinability and corrosion resistance

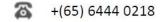

Applications:



Heat Sink

Micro-MIM Process

Planet Gear
17-4PH
As MIM
6.56 mm ³
0.05 grams
Micro Motors


• Part Name :	Hinge Capture
• Material Type :	17-4PH
• Color :	As MIM
• Part Volume :	3.85 mm ³
• Part Weight :	0.03 grams
 Application: 	Hypotubes for Key-hole Surgery

Contact Us

+(65) 6444 8273

Email: marketing@douyeetech.com

Website: http://www.douyeetech.com/

INNOVATION & TECHNOLOGY

CONFERENCE 2023 Innovation Through Advanced Manufacturing Research & Technologies

Integration of Precision Engineering and Digitised Manufacturing Solutions

Mr Tay Geok Kee Chief Technology Officer ISDN

000

ISDN collaboration with A*STAR entities

0

0 0

Powering Smart Operations For Sustainable Growth

We deliver solutions that power Asia's industrial future.

Our components and systems power semiconductor factories, advanced medical devices, clean energy plants, electric vehicles and more for over 10,000 customers throughout Asia

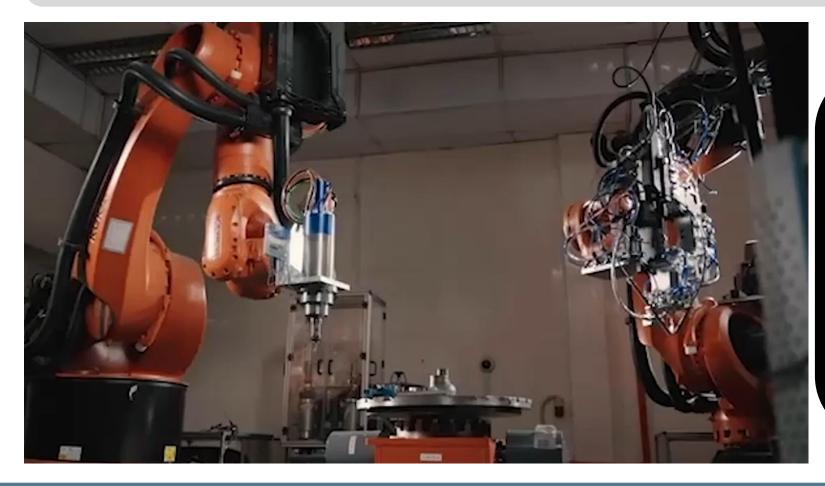
Solid platform in a growth market

1987 2005 2010 20172023 Group founded IPO on Singapore **Opened Wujiang** Listed on HKFX Results SGX main board exchange China campus 1995 2008 2013 2019 **Entered** China JV with Maxon Secured 1st hydro Partnership with with Maxon JV in Taiwan power project Novo Tellus **Growing scale Growing reach** Growing shareholder return 10,000+ >490% \$62bn+ **\$440m** 900+ \$25.5m +68% 70+ Asia market for profit to shareholders 5-year growth in locations profit growth revenue enterprise customers employees across Industrial Automation all-time record from 2020 profit to shareholders all-time record throughout Asia throughout Asia Asia Business Insights (2021)

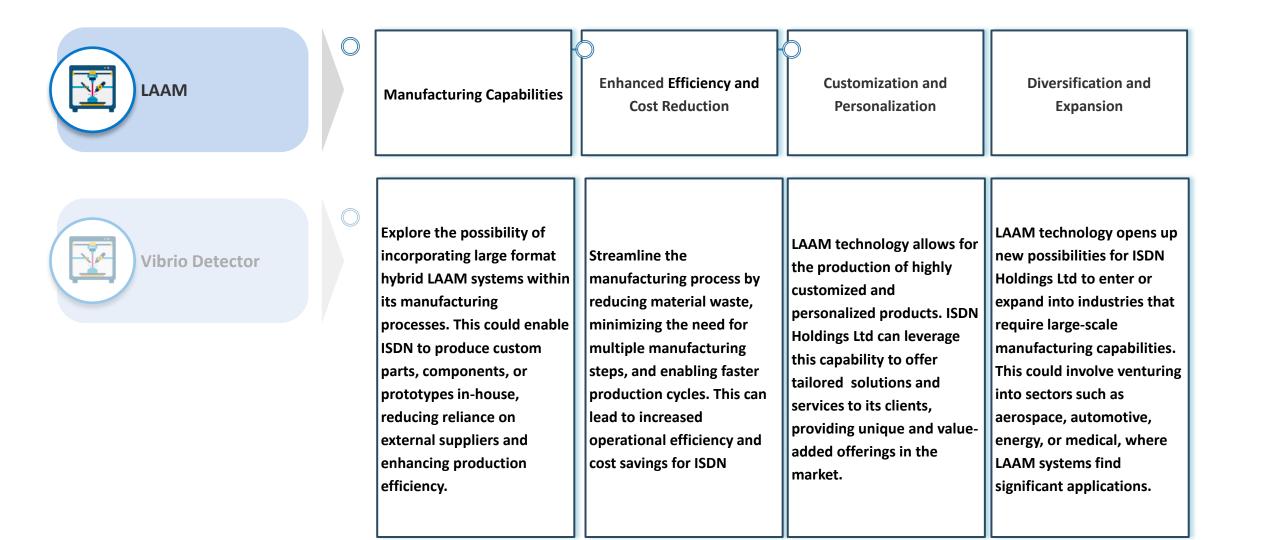
We have grown profitably for over 35 years

COLLABORATIONS

SIMTech-ISDN joint laboratory


Rapid Vibrio Detector

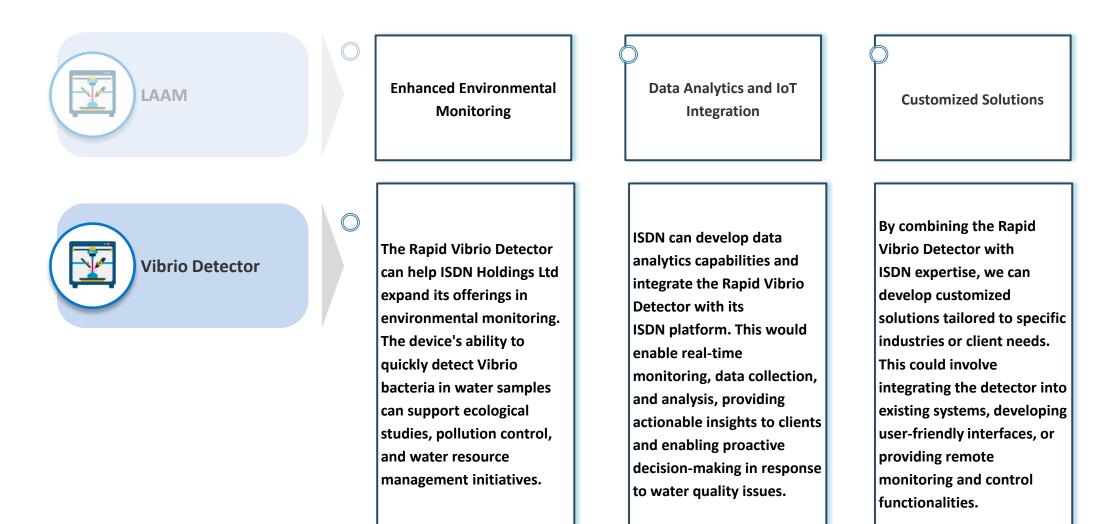
TruMarine


SIMTECH-ISDN JOINT LABORATORY

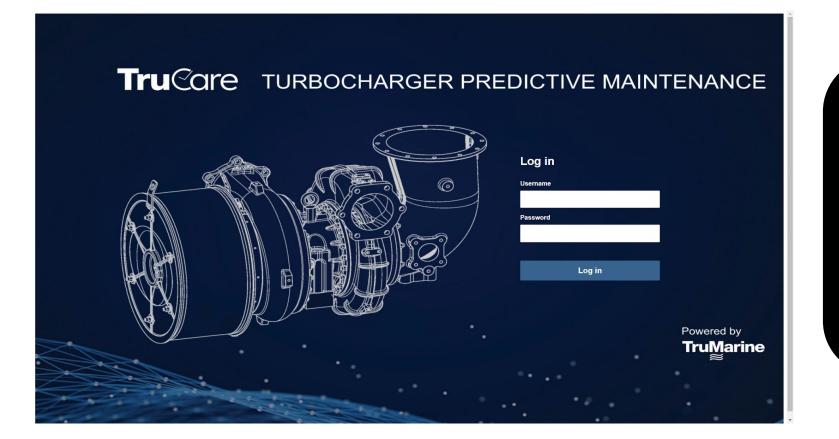
Working with SIMTech to jointly manage SIMTech-ISDN joint laboratory for large format hybrid laser aided additive manufacturing (LAAM) system and CAM for 5-axis CNC and 8-axis robot for combined LAAM and subtractive machining.


- High power laser system for welding and additive manufacturing;
- Full 5-axis hybrid system with additive manufacturing & milling functions for fabrication of 3D components, capable for additive manufacturing and machining of freeform 3D parts in one machine for components over a large footprint (>1m)

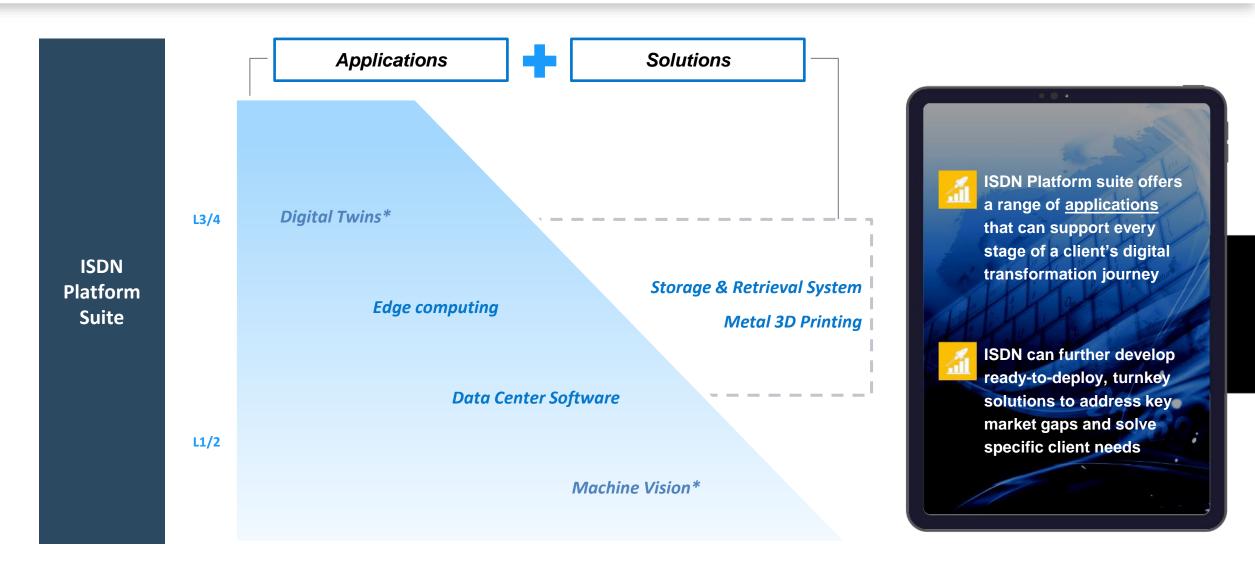
How LAAM will propel ISDN forward?


RAPID VIBRIO DETECTOR

Working with IMRE to transform Aquaculture Bacteria Detection


- Advanced onsite bacteria detection tool
- Transform Aquaculture and improve production outcome with timely bacteria detection
- Reduce time taken from 2 days to 30min
- Cost reduction by 50%

How Vibrio Detector will propel ISDN forward?


TRUMARINE, in collaboration with **ARTC**

Collect the data from vessels all around the world, and present the data and results from predictive analytics on a dashboard

- Filter different companies and the corresponding health score easily and locate the vessel
- Details like the individual health score and the details of fault can be viewed. Both generated using predictive analytics and transmitted back to the dashboard

ISDN is develop its platform suite of applications and turnkey solutions to address clients' varied automation needs

Our growth engine: accelerating our proven growth engine

Growing technology capabilities

• 5 pillars of growth

Motion control, precision manufacturing, software, systems, renewable energy

Growing Industry 4.0 technology

Proven ability to deliver from components to full systems. Growing market need for increasing automation.

Diversified growth drivers

• Growth industries

including advanced medical, semiconductors, precision manufacturing, digital infrastructure, shifting to Industry 4.0

• Growth technologies

from components to modules, systems, software and cloud

• Growth geographies

China, Singapore, Vietnam

Sustainable industry

- Early visionary and leading among peers Early investment in sustainable industry with strong commercial outlook anchored by hydrop investments.
- **Comprehensive commercial portfolio** including solutions for solar, clean agriculture, disinfectants

Operational cost discipline

Sales efficiency

Ready access to 10,000+ customers with growing needs

• Strong economies of scale

Many brands with common infrastructure

• IT-driven productivity

Consolidation & automation of corporate infrastructure

Thank you

0

0 0

INNOVATION & TECHNOLOGY

CONFERENCE 2023 Innovation Through Advanced Manufacturing Research & Technologies

Partnership for Innovation and Business Success Mr Jacky Chan Chief Financial Officer ATC

000

INNOVATION AND BUSINESS SUCCESS

INTRODUCTION

WHO WE ARE

BUSINESS SEGMENT

ELECTROPLATING

COATING

CLEAN & PACK

(CLEANROOM CLASS 100)

PRODUCTS - SURFACE TREATMENT

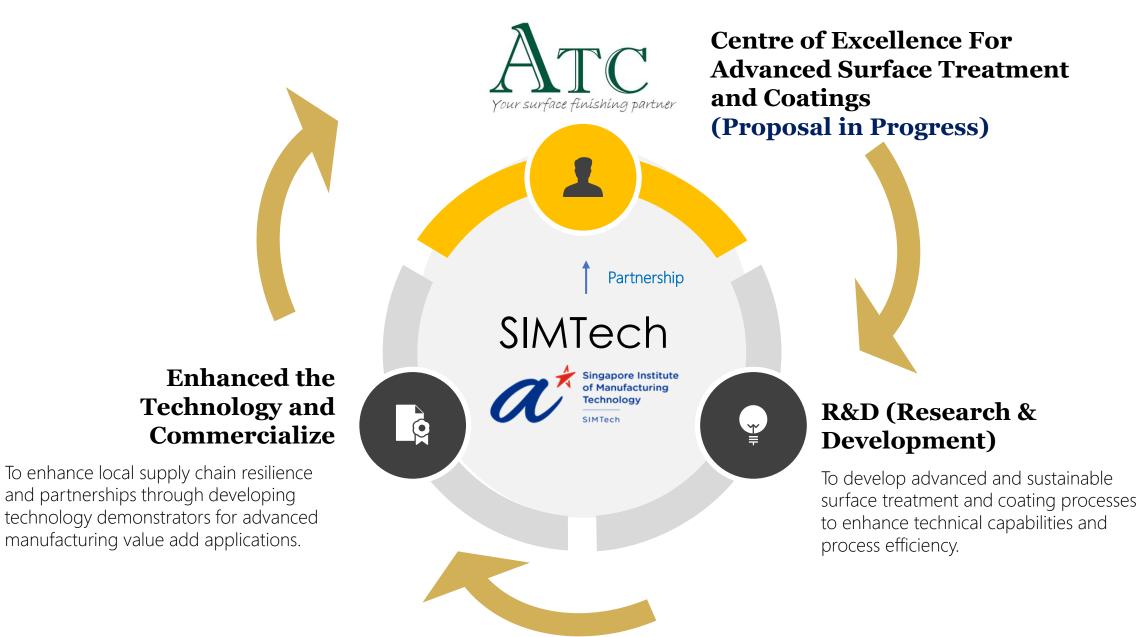
- Colour Anodizing
- Chromate Conversion Coating
- Electroless Nickel
- Passivation
- Electropolish
- Cadmium
- Chrome
- Dry/Solid Film Lubricant
- Silver
- Tin Plating
- Spray Painting

- Colour Anodizing
- Chromate Conversion Coating
- Electroless Nickel
- Passivation
- Electropolish
- Gold
- Silver
- Powder Coating
- Spray Painting
- Clean & Pack
- Zinc Plating

- Colour Anodizing
- Chromate Conversion Coating
- Electroless Nickel
- Passivation
- Electropolish
- Blueing
- Powder Coating
- Spray Painting
- Clean & Pack
- Zinc Plating

AEROSPACE Qualification & Award

O1 Quality Management System AS 9100 REVD & ISO 9001:2015


- 02 Nadcap Accredited in Chemical Processing Anodizing, Passivation, Conversion Coating, Electroless Nickel, Tin, Silver, Chrome, Cadmium, Electropolishing, Dry/Solid Film Lubricants
- O3 Singapore Aerospace Awards 2009 Silver Supplier Excellent Awards 2011 Gold Supplier Excellent Awards 2014 Silver Industry Excellent Awards

PARTNERSHIP FOR INNOVATION AND BUSINESS SUCCESS

PARTNERSHIP WITH SIMTech

SUSTAINABILITY ACHIEVEMENT

Sustainable practices by reusing repair copper trim for business class seats.

SUSTAINABILITY PARTNERSHIP

Development of metallization and electrolytic coating for ABS polymer.

TECHNOLOGY TRANSFER VIA LICENSING

Localization and project transfer to local SME and expand local aerospace MRO ecosystem.

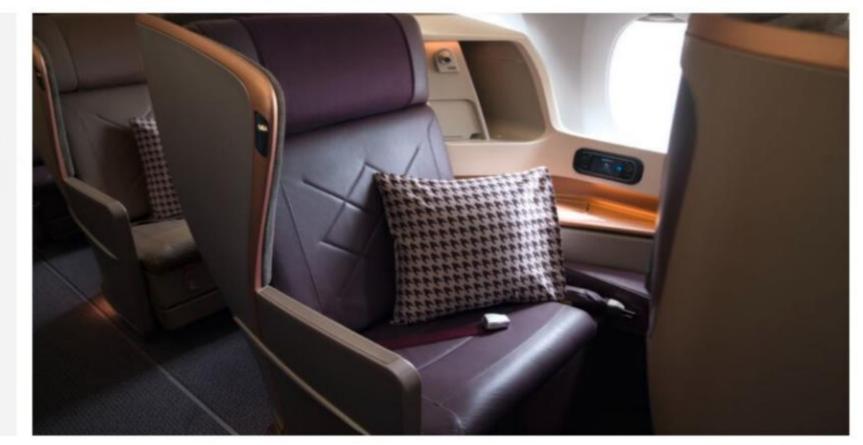
COMMERCIALIZATION COPPER TRIM REPAIR FOR SIAEC

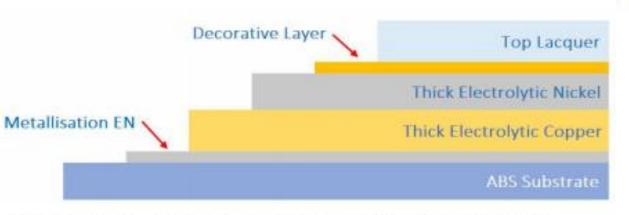
MRO BUSINESS CLASS SEAT

Our Workmanship

AIRCRAFT | COMPONENTS | MRO MANAGEMENT | MRO NEWS

ATC to take over repair line for refurbishment of Singapore Airlines' cabin components

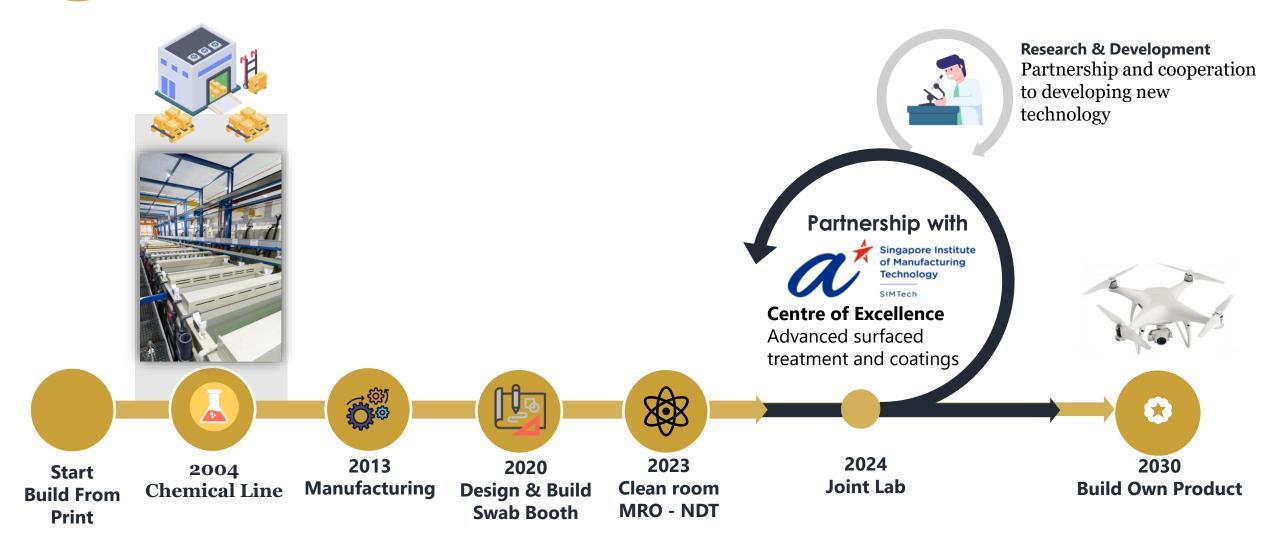

Craig Waters June 21, 2023


MRO

BUSINESS

CLASS SEAT

HOME / MRO MANAGEMENT / MRO NEWS /



Q

Trim Coating Layer Structure (ABS Base + Multi Layer Coatings)

FUTURE DEVELOPMENT

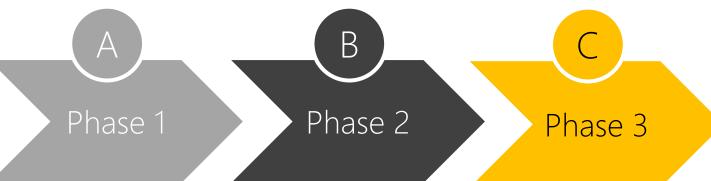
FD FUTURE DEVELOPMENT PRODUCT FROM OEM TO ODM

CLEANROOM

ATC Singapore: 6,000 sq. ft. ATC Penang: 6,000 sq. ft. CLASS 1000 CLASS 100

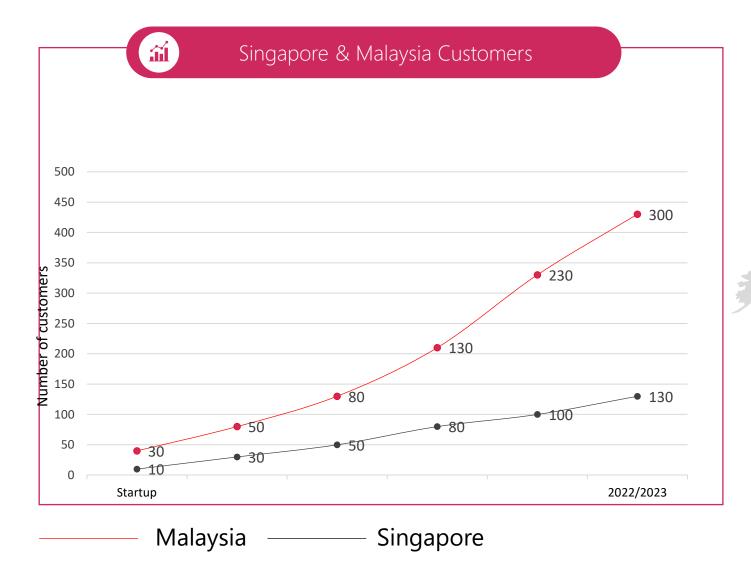
MRO NDT

Non-Destructive Test


Testing Methods

- Fluorescent Penetrant Inspection
- Magnetic Particle Inspection
- Eddy Current
- Ultrasonic

Centre of Excellence Advanced Surface Treatment and Coatings

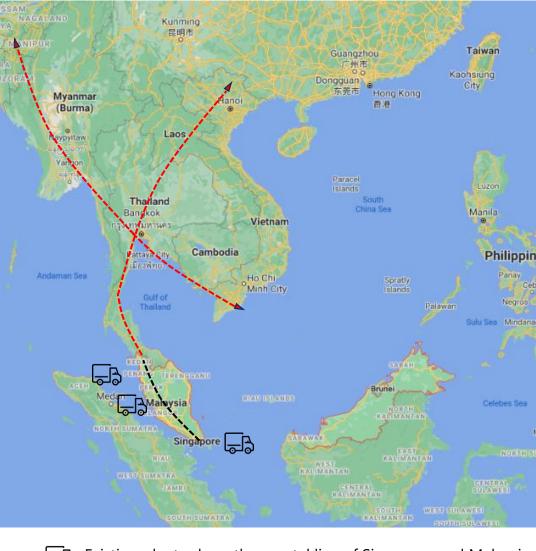

CENTRE OF EXCELLENCE

Sustainable Surface treatment and coating processes

Surface contact and interfacial enhancement

Surface treatment productivity improvement

ESSENTIAL MANUFACTURING SUPPLY CHAIN



ATC group of companies, Singapore and Malaysia factories have been provided solutions to more than 130 customers across various industries. Many of these customers have been with us for more than 10 years.

ATC remains an essential supplier in their supply chain nodes, enhancing their resources and collaboration ecosystems.

REGIONAL PRESENCE AND EXPANSION

Existing plants along the coastal line of Singapore and Malaysia

ATC's vision is to scale up operations in Malaysia and expand regionally in the future, drawing inspiration from Singapore's best-inclass factory setup as their role model. ATC partnership with A*Star's SIMTech for the establishment of a Centre of Excellence dedicated to surface treatment and coatings will significantly enhance ATC's capabilities in the region, ultimately leading to improved customer service and satisfaction.

Applied Total Control Treatment Pte Ltd

24A Woodlands Loop 737891 Singapore EMAIL : <u>sales@atc-treatment.com</u> PHONE : +65 6362 1200 WEBSITE : <u>www.atc-treatment.com</u>

ATC Surface Finishing Sdn Bhd No 1 & 3, Lorong IKS Juru 6, Taman Perindustrial Ringan Juru, 14100 Simpang Ampat, Seberang Perai Tengah, Pulau Pinang, Malaysia EMAIL : sales.pg@atc-treatment.com PHONE : +604 508 2166 WEBSITE www.atc-treatment.com

THANKYOU

ATC Coating Pte Ltd

BLK 205 Woodlands Avenue 9 Woodlands Spectrum II #04-54 738957 Singapore EMAIL : <u>sales@atc-treatment.com</u> PHONE : +65 6362 1200 WEBSITE : <u>www.atc-treatment.com</u>

ATC Cleantec Sdn Bhd

Lot 3, Jalan P/2A, Seksyen 13, Bangi Industrial Estate, Bandar Baru Bangi, 43650 Selangor, Malaysia EMAIL : <u>sales.kl@atc-treatment.com</u> PHONE : +603 8928 0823 WEBSITE : <u>www.atc-treatment.com</u>