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@ ie Phenotypic profiling and computational modeling

= Chemical/drug safety or efficacy assessments
» High-throughput Image-based Phenotypic Profiling
« Machine learning, data analysis, and assay automation
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Building Predictive In vitro or Ex vivo Models for
Chemical/Drug Safety or Efficacy Assessments
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dj High-throughput Image-based Phenotypic Profiling (HIPP)

P Measure large numbers of Select the most Build and evaluate
e B henotypic features based “predictive” mputational
oTol2 1212 Tolo P ypic features base predictive computationa
0/3[6[9]5]3]0 on general markers feature subset models
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Conceptually similar to “RNA expression profiling
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<Z( Number of measured Very Large Small

L phenotypic features (~100s-1000s) (<10)

‘:‘E’. How are the features Automatically based on Manually based on

; designed and selected? machine-learning algorithms known or expected mechanisms

O What stains/markers are General cell structures or Specific structures or

8 used? biological processes biological processes

§ Modes of action need to be No Yes

é defined a priori?

O Can discover novel MoAs? Yes No




1 Proximal tubule cells exhibit distinct phenotypes
w when exposed to different chemicals

Non-PTC-Toxic PTC-Toxic

reference chemicals reference chemicals

Human PTCs were treated with 44 reference chemicals
and stained with DNA, Actin, RelA/gH2AX
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In collaboration with Dani Zink, SIFBI L) [Su etal., Arch Tox, 2016]
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77 /* We performed phenotypic profiling ... 129 features

Citrinin Compounds (44)
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in vitro model for nephrotoxicity

Ran Su is now an Associate Professor ‘

at Tianjin University, China
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wﬂ Building Lung Toxicity Model Using Phenotypic Profiling

BEAS-2B

@ HIPPTox lung assays are more accurate and
— .. specific than standard cell count or viability assays

8

Diacetyl Tenofovir Carbamazepine Monocrotaline  Bicalutamide DMSO
(2 mM) (0.5%)

B Hoechst @ anti-yH2AX B Phalloidin

| |
60 70 80 90 40 60 80 100 40 60 80 100 m [Lee et al., Arch Tox, 2018]
Balanced accuracy (%) Sensitivity (%) Specificity (%)

Our assay at 16 hrs
Cell count assay at 16 hrs

Cell viability assay at 72 hrs
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Archives of Toxicology (2020) 94:2749-2767
https://dol.org/10.1007/500204-020-02778-3

IN VITRO SYSTEMS m)

Check for
updates

Predicting direct hepatocyte toxicity in humans by combining
high-throughput imaging of HepaRG cells and machine
learning-based phenotypic profiling
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Abstract

Accurate prediction of drug- and chemical-induced hepatotoxicity remains to be a problem for pharmaceutical companies as
well as other industries and regulators. The goal of the current study was to develop an in vitro/in silico method for the rapid
and accurate prediction of drug- and chemical-induced hepatocyte injury in humans. HepaRG cells were employed for high-
throughput imaging in combination with phenotypic profiling. A reference set of 69 drugs and chemicals was screened at a
range of 7 concentrations, and the cellular response values were used for training a supervised classifier and for determining
assay performance by using tenfold cross-validation. The results showed that the best performing phenotypic features were
related to nuclear translocation of RELA (RELA proto-oncogene, NF-kB subunit; also known as NF-kappa B p65), DNA
organization, and the F-actin cytoskeleton. Using a subset of 30 phenotypic features, direct hepatocyte toxicity in humans
could be predicted with a test sensitivity, specificity and balanced accuracy of 73%, 92%. and 83%, respectively. The method
was applied to another set of 26 drugs and chemicals with unclear annotation and their hepatocyte toxicity in humans was
predicted. The results also revealed that the identified discriminative phenotypic changes were related to cell death and cel-
lular senescence. Whereas cell death-related endpoints are widely applied in in vitro toxicology, cellular senescence-related
endpoints are not, although cellular senescence can be induced by various drugs and other small molecule compounds and
plays an important role in liver injury and disease. These findings show how phenotypic profiling can reveal unexpected
chemical-induced mechanisms in toxicology.




o™ * Example Of how our mOdeIS ?%ig National lns'tituteforPublicHealth
‘ w were used to assess fungicides +53 and the Environment

Ministry of Health, Welfare and Sport

R(hemichil_l Three agricultural azole fungicides with
esearcnin .
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pubs.acs.org/crt Amcte (N\ ?H Cl
\ < > 3 <:> 0
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Leo T. M. van der Ven,* Emiel Rorije, R. Corinne Sprong, Daniele Zink, Remco Derr, Giel Hendriks, : ]
LitFisin Too, and Midsin Tufien e Cyproconazole Flusilazole Propiconazole
Cite This: Chem. Res. Toxicol, 2020, 33, 834-848 I : I Read Online

What are their relative bioactivities?
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» To validate our model, we also add in 3 negative
controls: azole drugs known to have low kidney effects
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LA [van der Ven et al., Chem Res Tox, 2020]
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# Our ranking of the chemicals agrees with
w predictions based on other toxicological
endpoints made by RIVM

5 National Institute for Public Health
mig and the Environment
Ministry of Health, Welfare and Sport

Table 4. Potency Comparison®

Toxicological domain Prediction Targeted endpoints in prediction models Flu Pro Cyp Ref
Models (n)
Cell functions 4 Dynamic cell state, mitochondrial function, metabolism, transporter functions + + + 26-28
Endocripe perturbation, 5 Endocrine profiling, nuclear receptors, G-protein-coupled receptors N " N 26,29
Mode of action screening (aminergic/other)
Endocrine perturbation, specific g Estmger} signalling patlllwe.iy,l gstmgen Ijeceptor llnteractl.cln, androgen receptpr . . . 20-37
interaction, aromatase inhibition, steroidogenesis, thyroid hormone synthesis
Metabolic disorder 7 Glucose metabolism, adipocyte function, feeding behaviour + + + 38,39
& Developmental toxicity 8 Developmental toxicity in rats, rabbits, zebrafish, C.elegans; vascular development ++ ++ + 40-46
26,47-
Z (Developmental) Neurotoxicity 6 lon channel, transporters, enzymes, neuronal network activity, neurobehavior + + 2 .
| 9
O Hepatotoxicity 2 Hypertrophy, liver injury, proliferative lesions, oxidative stress + 50,51
Z Nephrotoxicity 1 Renal proximal tubular cell toxicity + 17
LZ) =11, 14,
i i i i 15,19,
< Genotoxicity 5 DNA d;mage, gene mutations, chromosomal aberrations, p53 activation and ) ) ) '
% oxidative stress 20,52,
7.4 53
L
o Carcinogenicity 2 Nuclear receptor activity, cancer hazard prioritization (hallmark genes) + ++ + 54,55
-
% LOAEL embryotoxicity 10 35 20
0 LOAEL hepatotoxicity 2.4 121 25.3
O LOAEL carcinogenicity 384 108 13.2
% Acceptable Daily Intake (ADI) 0.007 0.07 0.02
=
<
(11 *ut
m +\\ | 17+
O () [van der Ven et al., Chem Res Tox, 2020]

James Miller



CREATING GROWTH, ENHANCING LIVES

APCRA

International case study on the use of in vitro
bloactlwty in risk-based chemical prioritization

[] Predicted exposure level based on modeling
B PODs based on NAMs (ToxCast + HIPPTox)

PODs based on traditional animal models
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CHEMICAL RISK ASSESSMENT m [Paul-Friedman et al., Tox Sci, 2020] (Honorable Mention), 2020
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¥ TOXMAD

2 _» Toxicity Mode-of-Action
® Discovery Platform

Current safety assessments Future safety assessments

Phenotypic endpoints jl> Mechanistic reasoning

ToxMAD is based on various A*STAR-developed in vitro and in silico technologies, and
aim to rapidly and efficiently identify MoAs of chemicals (especially key molecular

initiating events and cellular events leading to adverse outcomes)

Molecular initiating events Key molecular/cellular events
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Sequence Metabolite 3D structure Virtual Chemogenomic Proteomic Transcriptomic Phenotypic Immuno-

analysis

profiling modeling docking profiling profiling profiling profiling phenotyping



. 7 A platform to publish and share large biological images
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% How do tumors with poor
& outcomes look Like?

IS my staining
correct?

Journal websites
or online data
repositories

Internet search
engines

Online forums or
social media sites

Does this patient Bioimage

have similar databases Suppliers’
product
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w* Introducing ImmunoAtlas ...
Imm@Atlas

Standard or reference images of

or immunotherapy markers sharing portal (2021)
(Users include researchers, pathologists,
standard workgroup, and companies)

HistoPath Analytics
(HPA) Platform

Online tissue image management
and analysis platform
(2019-2021)
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cellXpress 2.0
Image processing
engine in C++
(2011-2021)
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