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Development of AI research for:

• Digital Pathology and oncology
• Cardiovascular diseases
• Skin diseases
• Hematology
• Protein structures and drug discovery
• Agriculture technology



AI driven national Platform for CT cOronary angiography for clinicaL and 
industriaL applicatiOns (APOLLO) 

Computed Tomography Coronary Angiography (CTCA) is the first line investigation, 
but traditional analyses:

○ Take a long time (2 - 4 hours for a specialized report)
○ Lack efficient toolkits to analyze calcium score, epicardial fat, severity of 

stenosis, and plaque characteristics

Death

Singapore 20% Global
33%

Prevalence

General 
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> 65 years 
of age 
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Special thanks to Jiahui Dong for making the video



Catheter x-ray guided Angiography

Aims:
Use multiview AI approaches to develop an end-to-end pipeline for 
stenosis detection using X-ray angiography videos. 

Angiography video for RCA

Limitations of current diagnosis method:
• Inter observer variability in grading stenosis
• Low reproducibility
• Time consuming (videos with 11 different views need to be considered)

● Coronary angiogram is the gold standard technique to visualise coronary arteries of the heart.
● Performed to detect blood vessel narrowing (stenosis), found in coronary artery diseases

(Atherosclerosis, Thrombosis).

Diagnosing coronary artery diseases

Monitoring intervention strategies (stenting)
Insert catheter,

Inject contrast dye

Clinical Significance:
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Digital Pathology



6 to 12 needle 
core biopsy [2]

Hundreds of prostate glands per 
core and the total number is 
about 2000 glands per case

Pathologist evaluates 
histological slides

Diagnosis

● Increased incidence rates of prostate cancer [1] -> Increased workload
● Analysis of 1000s of glands per case � Tedious and time consuming
● Inter-observer and intra-observer variability
● Decreasing number of pathologists [3]

● Our pipeline is designed for use by pathologists on low-grade, low-volume cases.
● In these cases, a vast majority of the biopsy slide can consist of normal tissues with very few malignant glands
● Pathologists need to spend a long time finding any existing malignant glands and can easily miss malignant glands 

resulting in underdiagnosis

[1] Singapore Cancer Registry 50th Anniversary Monograph (1968 – 2017).
[2] Metter, D. M., Colgan, T. J., Leung, S. T., Timmons, C. F., & Park, J. Y. (2019). Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA network open, 
2(5), e194337-e194337.
[3] Wang, B., Chen, C. C., Zheng, R., Hu, J., & Ou, Y. (2018). Journal of the Chinese Medical Association, 81(12), 1044-1051. doi:10.1016/j.jcma.2018.06.003.

Using Deep Learning to Assist Pathologists for Prostate Cancer Biopsy 
In collaboration with
Weimiao Yu
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Oner, Mustafa Umit et al.   An AI-assisted Tool For Efficient Prostate Cancer Diagnosis . Submitted to Cell 
Patterns. 2022
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Using Deep Learning to Assist Pathologists for Prostate Cancer Biopsy 



~100,000 x 100,000 pixels 1024 x 1024 pixels

Cancer cell

Normal cell

• Tedious and time consuming

• High inter-observer variability [2]

Tumor purity: percentage of cancer cells within a sample
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Pathologist’s estimate

• Pathologists’s estimates are not 
consistent with genomic tumor
purity values (“accurate”)

[1] Kim et al., Journal of Pathology and Translational Medicine, 2017
[2] Smits et al., Modern Pathology, 2014

Genomic 
sequencing

Select the sample with 
the highest tumor 

purity
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An accurate tumor purity estimation is 
crucial in sample selection for genomic 

sequencing [1].

Pan Cancer: Spatially Resolved Tumor Purity Maps
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Correlation Analysis  in TCGA BRCA 
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Oner, Mustafa Umit et al. Obtaining spatially resolved tumor 
purity maps using deep multiple instance learning in a pan-
cancer study. Patterns 3.2 (2022): 100399.

Example Tumor Purity Heatmaps

Pan Cancer: Spatially Resolved Tumor Purity Maps



Multiplex Immunofluorescence Image Analysis

Multiplex 
immunofluorescence 

(mIF) Image

Tissue classification uses Deep Learning. 

Automated immunophenotype detection 
uses gaussian mixture models, clustering 
and histogram analysis. 
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AI in 
Protein Structure

computation



AI in structural biology research

Large time step molecular dynamics simulations cause fatal 
numerical instabilities. AI enhanced molecular dynamics can speed 
up simulations by > 10x – 100x

Deep Learning of an effective Hamiltonian

De novo drug design using reinforcement learning
Objective:

● In silico fragment growing 
through generative model

● Employing docking 
simulation to evaluate the 
reward

In collaboration with 
Yaw Sing, Chandra

Objective:
- Compile diverse benchmarking datasets and novel evaluation methods to test 
machine learning-based virtual screening models.
- Diagnose test performance instabilities.
- Combine new ligand and protein featurization methods with effective regularization to 
create well-generalizing models.

Partition data 
into multiple 

testing 
configurations

Compare performance 
of multiple models under 
multiple configurations

Virtual drug screening
~1,500,000 

protein -
ligand pairs

In collaboration with 
Fan Hao



SCISSOR: Analysis of Spatial transcriptomics

Objective:
-Use spatial techniques to identify spatial changes 
in organization interaction and function for different 
cell types and states
Application:
-Study spatial changes in organization interaction
-Molecular changes in cell type and 
tissue context
-Differential expressed gene
-Differential spatial signalling pathway

Nanocoating Technology for Plant Growth and Germination
Quantitative measurement software for automated plant monitoring 

Objective
-Develop a quantitative measurement Software
-Monitoring plant growth over time, like germination 
percentage, surface area of  leaves,etc. 
-Single time point measurements for plant growth indices.

-Build regression model for determining the optimal nanocoating formulation

Photo-acoutics Image analysis for skin inflammatory 
disorder diagnosis 

Psoriasis is a skin disease that causes red, itchy scaly patches. Atopic dermatitis
(eczema) is also a condition that makes your skin red and itchy.
Objective:
- To use the information provided by photoacoustic imaging to detect different 

inflammatory diseases such as Psoriasis and Atopic Dermatitis
- To evaluate if there exists a strong correlation between inflammatory skin 

diseases and diabetes

Different spatial maps provided by an photacoutics image

Melanin HbHbO2

SingCLOUD

Project aims:
- Study clinicoeconomics of cardiovascular diseases for 
improving disease management 

- Perform data integration and analysis across multiple 
databases to find new discoveries in clinical science and AI 
development

Total 26 Datasets

Regression 
Models

Clinically Relevant 
Predictions

Analysis of a large multi-centre database of
Cardiac Surgery Dataset

Medication Dataset
Financial Dataset etc

In collaboration with 
Wong Wing Cheong
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