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Toward the solution of
             Protein Structure Prediction Problem



The Sequence-to-Structure-to-Function Paradigm

Protein 
structure 
determination



Milestones of protein structure determination 

PDB with 199,277 
protein structures

20
23



#structure increases rapidly in PDB

35 new protein structures solved per day



#structure lags far behind #sequences

• Solving one structure costs ~$250,000-$500,000
• Determining one sequence costs ~$1,00-$5,00

#str cannot catch up #seq!

1187 times

200 times
100 times

500 times



Protein structure prediction

Is it possible?

The major challenge in modern computational biology
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• Yang, Roy, Xu, Poisson, Zhang. Nature Methods (2015) 
• Zhou, Zheng, Li, Pearce, Zhang, Bell, Zhang, Zhang. Nature Protocols (2022)



I-TASSER force field

o Statistical terms from PDB library 
• H-bond
• Short-range Ca distance correlations
• Ca/side-chain contact potential

o Propensity to predicted secondary structure
• Short-range restraints
• Protein-like

o Hydrophobicity prediction by neural network training

o Threading-based restraints
• Long-range contacts
• Ca-distance restraints
• pair-potential

Four sources (26 terms):

E = wiEi
i=1

26

∑
How to decide wi ?



Decoy-based parameter optimization

• 100 non-homologous proteins, each with 60,000 structure decoys

• Maximizing correlation between total energy and TM-score to native

E = wiEi
i=1

26

∑

Before optimization

Corr.=0.44

After optimization

Corr.=0.69



I-TASSER: 
989/1489=66%MODELLER: 

657/1489=44%

Why could not we fold the rest of 1/3 of proteins??

Benchmark tests on 1,489 protein domains (overall fold)



What if I-TASSER using best possible templates?

PDB

Best template

Structure 
alignment native

• Homologous templates with >25% sequence identity were removed
• Average sequence identity is 13%



Could the protein structure problem be solved?

97% 99.9%

66%

<RMSD>=2.25Å

• PDB is complete for enumerating all protein folds in nature
• We could fold almost all single-domain proteins if using best templates in the PDB
• How to identify the best template remains an issue (through deep-learning?)

When using 
threading



QUARK: An Algorithm for 
ab initio structure assembly

Dong Xu



QUARK: Extract long-range contacts from fragments

Condition-1: Both fragments (i,j) 
are from the same PDB protein

Condition-2: There is peak in the 
middle of distance histogram

Xu, Zhang, Proteins (2013)

A contact is extracted if following two conditions satisfied:



Illustrative examples of QUARK folding

Energy vs TM-score (for QUARK) QUARK (green) vs. Rosetta (blue) 
on native (red)



Many labs work on developing methods for protein structure prediction

Name Institution Software Method
Baker U Washington, USA ROSETTA Ab initio/threading

Eisenberg UCLA, USA BE Threading

Elofsson Stockholm U, Sweden Pcons Meta-server

Honig Columbia U, USA Jackal Homologous modeling

Jones U Coll London, UK Mgenthreader Threading

Karplus Harvard U, USA CHARMM Ab initio

Levitt Stanford U, USA KoBaMIN Ab initio/refinement

Li, Xu Waterloo U, Canada Raptor Threading

Sali UCSF, USA MODELLER Homologous modeling

Scheraga Cornell U, USA UNRES Ab initio

Shaw D.E.Shaw, USA MD Ab initio

Skolnick Georgia Tech, USA TASSER Ab initio/threading

Soding Gene Center Munich, Germany HHsearch Threading 

Sternberg Imper Coll London, UK Phyre Threading

Zhang U Michigan, USA I-TASSER/QUARK Ab initio/threading/refinement

And many other methods ……



CASP: Olympic Games in Protein Structure Prediction  

“CASP stands for Critical Assessment of Techniques for Protein Structure Prediction. High 
scoring groups in this competitive experiment are considered the de facto standard-bearers for 
what is the state of the art in protein structure prediction”   (http://www.wikipedia.org)

CASP timeline:



A history of CASP experiments
• CASP1 (1994), 35 groups,                       33 proteins
• CASP2 (1996), 152 groups,                     42 proteins
• CASP3 (1998), 120 groups,                     43 proteins
• CASP4 (2000), 160 groups +38 servers, 43 proteins
• CASP5 (2002), 187 groups +72 servers, 67 proteins
• CASP6 (2004), 201 groups +65 servers, 64 proteins
• CASP7 (2006), 209 groups +98 servers, 100 proteins
• CASP8 (2008), 113 groups +122 servers, 128 proteins
• CASP9 (2010), 109 groups +139 servers, 160 proteins
• CASP10 (2012), 95 groups+122 servers, 132 proteins
• CASP11 (2014), 123 groups+85 servers, 131 proteins
• CASP12 (2016), 111 groups+80 servers,  96 proteins
• CASP13 (2018), 126 groups+87 servers, 125 proteins
• CASP14 (2020), 133 groups+82 servers, 107 proteins
• CASP15 (2022), 105 groups+58 servers, 111 proteins

Result and procedure can be seen at https://predictioncenter.org/

DCA (co-evolution)

Deep Learning

I-TASSER

Rosetta

Classical 
approaches





Template based modeling (TBM) in CASP

GOAL: how to identify the best template and how to refine 
the template closer to the native

Template Final model Native



CASP11: First Zhang-server model vs best LOMETS templates
(82 domain/targets)

T0799-D4

T0828-D2

T0830-D2

RMSD =
1
L

di
2

i=1

L

∑

TM-score = 1
L

1
1+ di

2 d0
2

i=1

Lali

∑ ,        d0 =1.24 L−153 −1.8



Free modeling (FM) in CASP

GOAL: how to construct correct fold from scratch
(TM-score > 0.5)



Most successful FM examples by CASP 11
(before DCA and DL)

RMSD < 3 Å in the two cases, where no homologous templates are used.

TM=0.691 TM=0.736



Summary of FM by QUARK/I-TASSER in CASP11

• 3 domains have TM-score>0.5 (correct fold)
• 8 domains have TM-score>0.4
• Successful fold on domains >100AA for the first time

Highlights:





DCA contact-map: CASP11 -> CASP12

CASP11:
Success 
rate
3/31=10%

CASP12:
Success 
rate
13/38=34%

CASP11 CASP12

no-contact

Using DCA to remove noise



C-QUARK: Contact assisted structure folding

Contact filter



5 of 8 successful ab initio folding cases in CASP12
are due to contact prediction

Contact accuracy > 70%





Deep-learning contact: CASP12 -> CASP13

CASP11: 10% CASP12: 34% CASP13: 72%

Deep learning

DCAx



ResPre: Coupling deep-learning with precision matrix for contact prediction

Residual neural network

Covariance matrix
Precision matrix

Yang Li



Deep-learning significantly increase contact prediction accuracy

Method Long Medium Short All
ResPRE 0.700 0.529 0.475 0.567
MetaPsicov 0.507 0.403 0.383 0.431
Gremlin 0.395 0.253 0.205 0.284
CCMpred 0.387 0.249 0.202 0.279
SVMSEQ 0.199 0.264 0.346 0.267

TripletRes

• Benchmark test (L/2 in each range, 1.5*L overall):

• Blind test of contact prediction in CASP13



FM results in CASP13

32 FM targets by Zhang-Server



CASP14?



CASP14: D-I-TASSER: Deep-learning based folding

Distance-map

H-bond network Torsion angles

DeepMSA+metagenome

Contact-map

D-I-TASSER

DeepPotential

MLSLIFLFCFCVCMYVCCHVPLLPSVYIVSPATAFTVYLLPMLLLHIH

Probability histogram

Yang Li



How to add distance restraints?

E=-log[(p+pN)/(2pN)]

1, How to convert p(d) to E(d)?

2, E(d) with pseudo-count: Ca
se

-1

Ca
se-

2

Case-3
3, Combination of multi-predictors:

Simply take negative logarithm will not work



Impact of DeepPotential on protein structure prediction
(benchmark test on 230 PDB proteins)

Essentially convert traditional 
Hard distant-homologous 
targets into experimental-
resolution modeling targets



FM results in CASP14

24 FM targets by Zhang-Server in CASP14



Overall ranking of automated methods in CASP14

https://predictioncenter.org/casp14/zscores_final.cgi

Zhang-Server
QUARK



Ten best servers in CASP14 on 97 targets
Data from http://predictioncenter.org/casp14/zscores_final.cgi

GDT = 1
4L

nd<1 + nd<2 + nd<4 + nd<8( )

Z − score =
GDTgroup − GDT

σ
n    : number of residues with d below x Angstromsd<x

http://predictioncenter.org/casp14/zscores_final.cgi


Gap between us and others becomes smaller in CASP12-14

Co-evolution 
contact-map

Deep-learning 
contact-map

CASP14?

Deep-learning 
Cont/Dist/HB

Threading 
assembly



CASP15?



Wei Zheng

D-I-TASSER guided with deep-MSA & end-to-end transformer restraints



FM results in CASP15

30 FM targets with TM-score >0.8
by D-I-TASSER in CASP15

Folding rate: 43/47=91%



D-I-TASSER leads on all three categories of protein structure predictions



Progress from CASP11 to CASP15 on FM

CASP11:
Fragment 
assembly
(10%)

CASP12:
Contact by 
coevolution
(34%)

CASP13:
Contact by 
deep-learning
(72%)

CASP14:
DeepPotential 
by deep-learning
(76%)

L=121, TM=0.736 L=242, TM=0.660 L=368, TM=0.851 L=207, TM=0.927 L=1434, TM=0.944 

CASP15:
End-to-end by 
deep-learning
(91%)



Summary

• Deep-learning can fold nearly all single-domain proteins (problem solved?)
• A paradigm shift from relying on PDB to on genome sequences

Chance & Opportunity

• Deep learning

• Cryo-EM (ET)

Conclusion

Challenge
• Need better programs for MSA collections from metagenomes

– MetaSource (Yang et al, PNAS, 2021)
• Need sensitive DL to derive model from low Neff MSA
• Difficulty in modeling of multi-domain proteins and protein complexes



Nature 2023, under revision Robin Pearce



DeepFoldRNA：Test on 17 RNA-Puzzle Targets

• Best method: 9.73Å (with experimental data)
• DeepFoldRNA: 2.72Å (automated modeling) Representative examples



DeepFoldRNA folding a 73-residue transfer RNA (tRNA)
within less than 1 minute on a single laptop
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AlphaFold2 in CASP14

Key innovation of AlphaFold2 compared to previous approaches:

AlphaFold2 architecture (Two modules: EvoFormer + Structure)

Input embedding

Self-attention neural-network End-to-end training

Local coordinate 
system mapping enable 
end2end training



AlphaFold2 from DeepMind nearly solves PSP problem 
(at fold level for single-domain proteins)

Pearce & Zhang, Curr Opin Str Biol, 2021

Note:
• No correlation between TM and Neff
• Assessment only on domains

9/23 FM (or 59/88 All) targets have TM-score>0.914



Multi-domain protein modeling by AlphaFold2

• Domain orientation modeling is still challenging

Pearce & Zhang, JBC, 2021



Xi Zhang
Nat Meth 19: 195-204 (2022)

Recent research 
highlight 1



Test of CR-I-TASSER on 301 Hard targets
(Low-resolution: 5-15 Å density maps)

CR-I-TASSER



Zhang C et al, Nat Methods, 2022 Sep; 19(9):1109-1115.

Chengxin Zhang

US-align algorithm

The first universal macromolecular
Structural alignment algorithm

Recent 
research 
highlight 2



TASSER

Aligned regions

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHLKTEAEMKASEDLKKHGVTVL

      ::      :: :         : :: ::: :::   ::      :   :       :  :    
----SLEWDGSSMVNWAAVV-------DDFYQELFKAHPEYQNKFGFYQNKFGFYQN-----KGVALG---

query
template

I-TASSER

Benchmark tests on 1,489 protein domains (aligned regions)

CASP5-6 assessors commented (before I-TASSER development):

The first time that simulations 
could systematically draw 
templates closer to the native 
structure



Three categories of traditional approaches to protein structure prediction

Y Zhang. Curr Opin Str Biol (2009)



Robin Pearce

R Pearce et al. PNAS, 2023



Protein representation: On-and-Off lattice model

• Reduce CPU time
• Retain the accuracy of well-aligned fragments


