Toward the solution of
Protein Structure Prediction Problem

Yang Zhang

Department of Computer Science, School of Computing
Department of Biochemistry, Yong Loo Lin School of Medicine
Cancer Science Institute of Singapore
National University of Singapore



The Sequence-to-Structure-to-Function Paradigm



Milestones of protein structure determination
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#structure increases rapidly in PDB

35 new protein structures solved per day



#structure lags far behind #sequences

/

Solving one structure costs ~$250,000-$500,000
Determining one sequence costs ~$1,00-$5,00



Protein structure prediction
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Is it possible?

The major challenge in modern computational biology



* Yang, Roy, Xu, Poisson, Zhang. Nature Methods (2015)
* Zhou, Zheng, Li, Pearce, Zhang, Bell, Zhang, Zhang. Nature Protocols (2022)



I-TASSER force field

Four sources (26 terms):

o Statistical terms from PDB library
H-bond
Short-range C, distance correlations
C,/side-chain contact potential

o Propensity to predicted secondary structure
Short-range restraints

Protein-like
o Hydrophobicity prediction by neural network training
o Threading-based restraints ..! ar
Long-range contacts > '{”:
C,-distance restraints

pair-potential

E _ How to decide w;?




Decoy-based parameter optimization

» 100 non-homologous proteins, each with 60,000 structure decoys

* Maximizing correlation between total energy and TM-score to native

Before op'rimizcn‘ion A B "] After optimization
Corr.=0.44 : L. '. T oy o . Corr.=0.69
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Benchmark tests on 1,489 protein domains (overall fold)

MODELLER:  5ag)iins 61,
657/1489=44% \ °
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What if I-TASSER using best possible templates?

Structure <1
G“gnmenT r{a1'|ve

Homologous templates with >25% sequence identity were removed
Average sequence identity is 13%



Could the protein structure problem be solved?

<RMSD>=2.25A
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RMSD to Native

PDB is complete for enumerating all protein folds in nature
We could fold almost all single-domain proteins if using best templates in the PDB
How to identify the best template remains an issue (through deep-learning?)



QUARK: An Algorithm for
ab initio structure assembly




QUARK: Extract long-range contacts from fragments

A contact is extracted if following two conditions satisfied:

Condition-1: Both fragments (i,j) Condition-2: There is peak in the
are from the same PDB protein middle of distance histogram

—m— Accepted distance profile
—e— Unaccepted distance profile
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Xu, Zhang, Proteins (2013)



Illustrative examples of QUARK folding

1b4bA, PCC=-0.475, TM-score=0.624 2bl7A, PCC=-0.116, TM-score=0.527 2042A, PCC=-0.489, TM-score=0.229

Energy vs TM-score (for QUARK)

TM-score HB-score
0.68 0.65
0.90 0.76

2v94B RMSD TM-score HB-score
Rosetta 627A 0.39 0.48
QUARK 6.56A 054 0.52

1ykuA RMSD TM-score HB-score
Rosetta 8.11A 046 0.78
QUARK 4.17A 061 0.88

1jo0A RMSD TM-score HB-score
Rosetta 6.15A 0.57 0.58
QUARK 6.05A 061 0.80

QUARK (green) vs. Rosetta (b'ue)

on native (

)



Many labs work on developing methods for protein structure prediction

And many other methods



CASP: Olympic Games in Protein Structure Prediction

"CASP stands for Critical Assessment of Techniques for Protein Structure Prediction. High
scoring groups in this competitive experiment are considered the de facto standard-bearers for

what is the state of the art in protein structure prediction” (http://www.wikipedia.org)

Prediction season  Assessment season Meeting

CASP timeline:




i

A history of CASP experiments

CASP1 (1994), 35 groups, 33 proteins N
CASP2 (1996), 152 groups, 42 proteins Rosetta
CASP3 (1998), 120 groups, 43 proteins

CASP4 (2000), 160 groups +38 servers, 43 proteins
CASP5 (2002), 187 groups +72 servers, 67 proteins Classical
CASP6 (2004), 201 groups +65 servers, 64 proteins 7= o ches
CASP7 (2006), 209 groups +98 servers, 100 proteins
CASP8 (2008), 113 groups +122 servers, 128 proteins
CASP9 (2010), 109 groups +139 servers, 160 proteins
CASP10 (2012), 95 groups+122 servers, 132 proteins
CASP11 (2014), 123 groups+85 servers, 131 proteins —
CASP12 (2016), 111 groups+80 servers, 96 proteins «—— DCA (co-evolution)
CASP13 (2018), 126 groups+87 servers, 125 proteins «__

CASP14 (2020), 133 groups+82 servers, 107 proteins «— Deep Learning
CASP15 (2022), 105 groups+58 servers, 111 proteins ~

Result and procedure can be seen at https://predictioncenter.org/




* Number of human expert groups: 123
* Number of automated servers: 84

* Number of targets/domains: 126

Domains are assessed
individually

Two categories:

81 TBM: Template based modeling targets
45 FM: Free modeling targets



Template based modeling (TBM) in CASP

Template Final model Native

GOAL: how to identify the best template and how to refine

the template closer to the native




CASP11: First Zhang-server model vs best LOMETS templates
(82 domain/targets)
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(TM-score (template))=0.627
(TM-score (model))=0.703

10 15 0 0.2 0.4 0.6 0.8 1
RMSD of best template (A) TM-score of best template
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Free modeling (FM) in CASP

P
U= 24K, (b-bof +> Ko (9-6) 5"% seg{\
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All partial charges

GOAL: how to construct correct fold from scratch
(TM-score > 0.5)



Most successful FM examples by CASP 11
(before DCA and DL)
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T0604_D1 Y A\ " T0837 D1
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X-ray structure predicted model X-ray structure predicted model

TM=0.691 TM=0.736

RMSD < 3 A in the two cases, where no homologous templates are used.



Summary of FM by QUARK/I-TASSER in CASP11
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Success rate=3/31=10%
TM=0.348

500
Protein Length (AA)

Highlights:

3 domains have TM-score>0.5 (correct fold)
8 domains have TM-score>0.4
Successful fold on domains >100AA for the first time



CASP12?



DCA contact-map: CASP11 -> CASP12

caspit: S CASP12:
Success g Success
rate E' rate
3/31=10% = 13/38=34%

Success rate=3/31=10% Success rate=13/38=34%
TM=0.348 : TM=0.429

Evolutionary
constraints

Inference by DCA |
{P(Al,Az,n-,AL) = %exp {Z eij(4n4p) + Z hi(A)

i<j i

eij(Ai4;) = —[f;(Au4;) - fi(Ai)fj(A/)](_l)

* Co-evolution 1t Co-evolution I
i Co-evolution " % ontact



C-QUARK: Contact assisted structure folding




5 of 8 successful ab /initio folding cases in CASP12
are due to contact prediction

O a-proteins
O p-proteins
¥ o

T0866D1 B-proteins
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CASP13?



Deep-learning contact: CASP12 -> CASP13

—

70 .
O o-protein
A p-protein
ap-protein

. CASPI1:40%—— i | CASP12:34% §  CASP13:72%

S
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TM-score
o

Success rate=3/31=10% _ Success rate=13/38=34% __ r Success rale=23/32=72%_§
<(TM}-=(?.348 1F : (TM;-=OI.429 1F : <(TM):-=IO.574 3

250 500
Protein Length (AA)

Evolutionary
constraints

<

Inference by deep-learning T

D
*  Co-evolution %  Co-evolution

* Co-evolution




ResPre: Coupling deep-learning with precision matrix for contact prediction

<«— Covariance matrix
<«— Precision matrix

22 Basic Blocks
J

LxLx64 LxLx64

Basic Block
Basic Block
Basic Block
Conv3x3-2

Input feature

Convixl 1X1 convolution, 64 out channels

Conv3x3-1 3X3 convolution, 64 out channels

Conv3x3-2 3X3 convolution, 1 out channel

Conv3x3-1 :
Conv3x3-1 "“

N Instance Normalization
RelU RelLU activation function
Identity Identity activation function

Sigmoid Sigmoid activation function

Identity

Predicted contact-map

Residual neural network {xn = Xn-1 + F (Xn-1, Wn)

%, = ReLU(x,)



Deep-learning significantly increase contact prediction accuracy

« Benchmark test (L/2 in each range, 1.5*L overall):

Nethod [ tong | Medum st
ResPRE 0.700 0.529 0.475 0.567
0.507 0.403 0.383 0.431

0.395 0.253 0.205 0.284
CCMpred | 0.387 0.249 0.202 0.279
SVMSEQ | 0.199 0.264 0.346 0.267

* Blind test of contact prediction in CASP13

TripletRes

@ I )
\\xm MMfi,ﬁM&/f

24 residual basic blocks

TripletRes

‘O

I Groups



FM results in CASP13
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Success rate=23/32=72%
TM=0.574

Protein Length (AA)

32 FM targets by Zhang-Server



CASP14?



CASP14: D-I-TASSER: Deep-learning based folding
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@ DeepPotential

Contact-map | Distance-map

H-bond network Torsion angles

Probability histogram D-I-TASSER



SumP >0.9

How to add distance restraints? |
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1, How to convert p(d) to E(d)?

-log[(p+py)/(2py)]

f?

Case2: SumP ~ 0.5-0.8

problem is that we
cannot consider E for d>d,

p, is medium

2, E(d) with pseudo-count:

E=-log[(p+pn)/(2pN)]

-ogl(p+p,)/(2p,)]  109(2py)

Case3: SumP <= 0.5
\3 T op, is medium

3, Combination of multi-predictors:




Impact of on protein structure prediction
(benchmark test on 230 PDB proteins)
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TM-score by I-TASSER




FM results in CASP14
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Success rate=28/37=76%
(TM)=0.662

0 500
Protein Length (AA)

=
N

o

24 FM targets by Zhang-Server in CASP14



Overall ranking of automated methods in CASP14

Zhang-Server
QUARK

Sum(Zscore>0.0)

@ S XL D LGOI ITRIL LS
& & & & &S ST oo & & &

M Groups

aGR

son 4 Domains Count a SUM Zscore 4 Rank SUM Zscore AAVG Zscore 4 Rank AVG Zscore vSUI‘.’I Zscore ARank SUM Zscore AAVG Zscore  Rank AVG Zscore
name

¥ (>-2.0) Y (>-2.0) ¥ (>-2.0) ¥ (>-2.0) (>0.0) % >0.0)
Zhang-Server 85.8948 894 1

QUARK 6 84.2077 2 8772 2

1

BAKER-ROSETTASERVER : -
Zhang-CEthreader 6 76.722 7992 3
Zhang-TBM 2714 7574 5

tFold 6 952 7 625 7

https://predictioncenter.org/caspl4/zscores_final.cgi



Ten best servers in CASP14 on 97 targets

Data from http://predictioncenter.org/caspl4/zscores_final.cqi

( ASP14 ('9" domains)
Zhan0 Server Um\ ersity of Michigan, USA
QUARK University of Michigan. USA
Baker Rosetta University of Washington, USA
Yang-Server Nankai University, China
RaptorX Toyota Institute at Chicago, USA
tFold Tencent AI Lab, China
Multicom-hybrid University of Missourt, USA
Feig-S Michigan State University, USA
FoldX Microsoft Research Asia, China
Falcon-DeepFold Chinese Academy of Science, China
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http://predictioncenter.org/casp14/zscores_final.cgi

Gap between us and others becomes smaller in CASP12-14

i I i I

Threading Co-evolution Deep-learning Deep-learning
assembly contact-map contact-map Cont/Dist/HB



CASP15?



D-I-TASSER guided with deep-MSA & end-to-end transformer restraints

Wei Zheng



FM results in CASP15

30 FM targets with TM-score >0.8
by D-I-TASSER in CASP15



D-I-TASSER leads on all three categories of protein structure predictions



Progress from CASP11 to CASP15 on FM

L=121, TM=0.736 L=242, TM=0.660 L=368, TM=0.851 L=207, TM=0.927 L=1434, TM=0.944

o
o
o
P
=
h %
Success rate=3/31=10% Success rate=13/38=34% Success rate=23/32=72% Success rate=28/37=76% Success rate=43/47=91%
(TM)=0.348 ,f (TM)=0.429 § (TMY=0.574 : (TM)=0.662 (TM)=0.840
0 500 1000 1500
Protein Length (AA)
CASP11: CASP12: CASP13: CASP14. CASP15:
Fragment Contact by Contact by [> DeepPotential End-to-end by
assembly E> coevolution deep-learning by deep-learning deep-learning

(10%) (34%) (72%) (76%) (91%)



Summary

Conclusion

Deep-learning can fold nearly all single-domain proteins (problem solved?)
A paradigm shift from relying on PDB to on genome sequences

Challenge
Need better programs for MSA collections from metagenomes
- MetaSource (Yang et al, PNAS, 2021) /"f:'—i_—f,.
Need sensitive DL to derive model from low Neft MSA Qe

Difficulty in modeling of multi-domain proteins and protein complexes %

Chance & Opportunity

Cryo-EM (ET)



Robin Pearce



DeepFoldRNA: Test on 17 RNA-Puzzle Targets

+  Best method: 9.73A4 (with experimental data)
* DeepFoldRNA: 2.72A (automated modeling) Represen‘ra‘rive examples



DeepFoldRNA folding a 73-residue transfer RNA (1RNA)
within less than 1 minute on a single laptop
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AlphaFold2 in CASP14

AlphaFold2 architecture (Two modules: EvoFormer + Structure)

Input embedding

Structure
module
(8 blocks)

Evoformer
(48 blocks)

Local coordinate
system mapping enable
end2end fraining

Self-attention neural-network End-to-end training



AlphaFold2 from DeepMind nearly solves PSP problem
(at fold level for single-domain proteins)

9/23 FM (or 59/88 All) targets have TM-score>0.914 Pearce & Zhang, Curr Opin Str Biol, 2021



Multi-domain protein modeling by AlphaFold2

Domain (Length) TM-score

Full Length (L=190) 0.92

Domain 1 (L=114) 0.90

Domain 2 (L=76) 091
 FullLength(L=346) 077

Domain 1 (L=147) 0.96

TR04752 Domain 2 (L=83) 0.93

Domain 3 (L=116) 0.62

Full Length (L=832) 0.69

Domain 1 (L=539) 0.96

T1052 Domain 2 (L=213) 0.99

Domain 3 (L=80) 0.98
Full Length (L=576) 0.97
T1053 Domain 1 (L=405) .
Domain 2 (L=171)

Full Length (L=382)

Full Length (L=838)
Domain 1 (L=464)
Domain 2 (L=271)
Domain 3 (L=103)
Full Length (L=321)
Domain 1 (L=76)
T1070 Domain 2 (L=101)
Domain 3 (L=76) .
Domain 4 (L=68) 0.95
Full Length (L=406)
Domain 1 (L=167)
T1085 Domain 2 (L=182) .
Domain 3 (L=57) .
Full Length (L=381)
Domain 1 (L=193)
Domain 2 (L=188)
Full Length (L=629)
Domain 1 (L=141)
Domain 2 (L=382)
Domain 3 (L=106)
Full Length (L=484)
Domain 1 (L=277)

Domin2 (217 ? « Domain orientation modeling is still challenging
Full Length (L=426) .

Domain 1 (L=255)

Domain 2 (L=171)

Full Length (L=484.3)

Average Domains (L=187.5)

Pearce & Zhang, JBC, 2021



nature methods MmmmARTISMLan
Recent research umsn-o.

highlight 1

CR-I-TASSER: assemble protein structures from
cryo-EM density maps using deep convolutional
neural networks Xi Zhang

Xi Zhang', Biao Zhang', Peter L. Freddolino™'?* and Yang Zhang 2% Nat Meth 19: 195-204 (2022)

1. Initial Data Processing 2. Template Refinement 3. Simulations/Refinement

Input of CR-I-TASSER _ -
Query sequence ?{nsity map\

- N
DeeQMSA \5 -7asser + "Vre’mp Ert‘mp + WemEpm + Wb(":{ylv Ef-ﬁ”
Deep Multiple v )
Sequence ‘ LSDBDGTVEKGFKAEWLAVKDERLIVGE /
Alignment LEKBWIL o
Generator ! l

SPICKER Clustering

Near-native model selection

I

3D-CNN predictor
e I

ResPRE

Sequence-based
contact prediction

Cluster centroid

I
|
I
I
|
|
1
1
\

\

.bs%
g
Ny
9 Structure re-assembly

P o

FG-MD
Fragment guided MD
simulation for refinement

Contact map 3 Template reselection

h

Final model




Test of CR-I-TASSER on 301 Hard targets
(Low-resolution: 5-15 A density maps)



Recent

research
highlight 2

US-align algorithm

Monomeric
structure
alignment

Chain 1 ,
Multiple structure
alignment (MSTA)

Oligomer 1

Oligomer 2

Chain1

Oligomeric
Template

The first universal macromolecular
Structural alignment algorithm

Oligomeric
structure
alignment

Template
-based
docking

Chengxin Zhang



Benchmark tests on 1,489 protein domains (aligned regions)

query
template

I-TASSER

The first fime that simulations
could systematically draw
templates closer to the native
structure

RMSD of final model

RMSD of best template

CASP5-6 assessors commented (before I-TASSER development):

We are forced to draw the disappointing conclusion that, Sad notes are once again those regarding the poor

similarly to what observed in previous editions of the performance in predicting features not directly inheritable

experiment, no model resulted to be closer to the target from the parent and in obtaining a model that is closer to
structure than the template to any significant extent (the the native structure than the template used to build it.




Three categories of traditional approaches to protein structure prediction



De Novo Protein Fold Design Through Sequence-Independent
Fragment Assembly Simulations

Robin Pearce?, Xiaogiang Huang?, Gilbert S. Omenn®°, and Yang Zhang?®>%e*

Robin Pearce

R Pearce et al. PNAS, 2023



Protein representation: On-and-Off lattice model

* Reduce CPU time
* Retain the accuracy of well-aligned fragments



