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Any statements made during this talk are in 
my capacity as an academic



The 3rd wave of computers in drug discovery (80s, 2000, today) 

– time for realistic assessment has come
Fortune cover 1981 Recent headlines (2018-2020)



Old enough to remember 2000 biotech bubble, Human 

Genome Project, etc.

T. Reiss, Trends in Biotechnology, 2001:

“The number of drug targets will increase by at least one order of 
magnitude and target validation will become a high-throughput 
process.”

“More drug targets… 3,000–10,000 targets compared with 483”

Recent (2017) estimates of drug targets put the number currently 
at around 667

http://www.DrugDiscovery.NET/DataSignal



Outline: The data landscape, deep learning, 

biology… and humans

- Chemical and biological data: The flat-earth view

- And where a flat earth is great!

- Chemical and biological data: The round-earth view

- Drug discovery data and its complexity (... the elephant in the room…)

- Key learnings:

1. The data we have is not the data we need

2. … so what do we need, then?

3. Model validation is poor….

4. … and it is poor because of human biases, preferences



A simple view on the world: Linking Chemistry, Phenotype, 

Targets / Mode of Action (myself, until ca. 2010)

a.k.a.
“The world is flat”

= “We believe our labels” 

(which are often 
insufficiently quantified, not 
directed or causal, 
unconditional, don’t have 
time/concentration/ 
biological setup relevant for 
in vivo situation, etc.)
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So what’s the point of it all?

We would like to answer questions

- “What is the reason upon treatment with A for phenotypic 
effect B?”

-> Mode of Action

- “Which compound should I make to achieve effect C in a 
biological system?”

-> Chemistry

- “Does patient D or patient E respond better to drug F?”

-> Phenotype / Phenotype Change



Starting from in vivo efficacy we can hypothesize the 

MoA, based on ligand chemistry
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The ‘flat earth’ view can still help! Eg Public target 

prediction model, based on ~200 mio data points

- E.g. work of Lewis Mervin, with AstraZeneca

- 2015, J. Cheminformatics (7) 51

- ChEMBL actives (~300k), PubChem inactives (~200m); 1,080 targets

- Can be retrained on in-house data

- https://github.com/lhm30/PIDGIN

Also data publicly available



So: Using bioactivity data for ligand-protein activity 

modelling ‘is relatively possible’

- We make use of existing data (millions of data points!)

- On-target bioactivities (links between chemical structure and protein 
targets) are relatively large-scale, and relatively homogenous

- Hence, generating models for on-target bioactivities is ‘possible’

- Can also be used for design (eg multi-target ligands)

BUT:

- Only covers known chemical space

- Suffers from various data biases (analogues, data set sizes, etc.)

- Labels are still heterogenous

- In vivo relevance of predictions needs to be established (!!!; PK, target 
engagement in vivo, competing ligand/knock-out, etc.)



BUT…The world is not flat. What now?

- Links between drugs/targets/diseases are quantitative, incompletely 
characterized

- Subtle differences in eg compound effects (partial vs full agonists, off-
targets, residence times, biased signalling, etc.)

- ‘Pathways’ from very heterogenous underlying information; dynamic 
elements not captured etc.

- Effects are state-dependent (variation between individuals, age, sex, co-
medication…) – PK is often rather neglected in AI approaches

- Phenotyping is sparse, subjective (deep phenotyping?)

- We don’t understand biology (‘the system’), we don’t know what we should 
label, and measure, hence … 

- We label what we can measure: ‘Technology push’ vs ‘science pull’ (!)

- Are our labels – ‘drug treats disease X’, ‘ligand is active against 
target Y’, … - meaningful?

- Conditionality: Causality, confidence, quantification, ….?

- Computer science is tremendously powerful… but is our data?

?
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Example of conditional labels: adverse reactions

- “Does drug Y cause adverse reaction Z? Yes, or no?”

- Pharmacovigilance Department: Yes, if we have… 

- A patient with this genotype (which is generally unknown) 

- Who has this disease endotype (which is often insufficiently defined) 

- Who takes dose X of drug Y (but sometimes also forgets to take it)

- With known targets 1...n, but also unknown targets (n+1…z) 

- Then we see adverse reaction (effect) Z … 

- But only in x% of all cases and 

- With different severity and

- Mostly if co-administered with a drug from class C, and then 

- More frequently in males and

- Only long-term

- (Etc.)

- So – does drug Y cause adverse event Z? 



Data/’AI’ in early discovery vs efficacy/safety

Early discovery/proxy space 
(usually in vitro)

- Often ‘simple’ readouts (eg
protein activity), hence…

- Large number of data points for 
training models

- Models have clear labels (within 
limits of model system, eg
‘ligand is active against protein 
at IC50<10uM’, or solubilities, 
logP, or the like)

- Good for model generation: 
Many, clearly categorized data 
points

Efficacy/safety (usually in vivo)

- Quantitative data (dose, exposure, 
…) 

- More complex models (to generate 
data), fuzzy labels (classes 
‘depend’, on exposure, multiple eg
histopathological endpoints) –
hence…

- Less, and less clearly labelled 
data: Difficult from machine 
learning angle

- Data: Recording vs data suitable 
for mining – eg animal data tricky, 
even within single company



Problem setting in early discovery vs safety

Early discovery/proxy space

- Discovery setting – ‘find me 
suitable 100s or 1000s out of 
a million’ (eg screening)

- Anything fulfilling (limited) set 
of criteria will do ‘for now’, 
predicting presence of 
something

- Computationally generative
models often fine

Efficacy/safety

- Need to predict for this particular 
data point, quantitatively!

- Long list of criteria to rule out, 
based on limited data… 
predicting absence of 
‘everything’ (eg different modes 
of toxicity)

- Predictive models (more tricky 
than generative!)



AI in drug discovery: Data availability drives the field 

of ‘AI in drug discovery’ … but a ligand is not a drug!



The quality of in vivo-relevant decisions matters 

more than early speed!



Discussion

1. The data we have is not the data we need

2. … so what data do we need, then?

3. Model validation is poor….

4. … and it is poor because of human bias



Much of the data we generate is generated for the 

wrong reasons (or in wrong ways)

- Often proxy measures (to reduce cost); historical data gets 
repurposed now ‘for AI’

- Not always relevant system/dose/time point/endpoint etc.

- “Models of models” – “the in silico model of the Glu/Gal mitotoxicity
model” … is then meant to predict the in vivo situation

- We need to care more about modelling the actual endpoint of 
interest (say, organ risk), not the proxy (say, assay) endpoint!

- Often hypothesis-free (‘here we have our pile of data … anyone 
wants to have a go at it?’) instead of hypothesis-driven

- Often ‘technology push’, instead of ‘science pull’



The question needs to come first… and then the data, then 

the representation, and then the method

http://www.DrugDiscovery.NET/HowToLie 

Lots of 

attention 

currently 

here…

But we 

need to 

care more 

about this



Validating a model is not trivial! 

Model validation is always process validation!

- Training/test set split – too small, coverage irrelevant

- Prospective validation – too small, and biased (process!)

- Baseline model not well-chosen/optimized

- Data quality not assessed on context of model performance

- Relevance of model endpoint not assessed

- Result of process of validation ascribed to model

- “How to Lie With Computational Predictive Models in 
Drug Discovery”

- http://www.DrugDiscovery.NET/HowToLie



The bigger picture: ‘AI’ is where it is due in no small 

part due to human psychology

- Hype bring you money and fame – realism is boring

- FOMO (‘the others also do it!’) and ‘beliefs’ often drive 
decisions (‘maybe they really have the secret sauce?’)

- ‘Everyone needs a winner’ (‘after investing X million we 
need to show success to the CEO/VP/our investors/…’)

- Selective reporting of successes leads to everyone 
declaring victory (but in reality no one knows what’s 
actually going on)

- Difficult to really ‘advance a field’ with little real 
comparison of methods



What could make sense from the data side?

- We need relevant data (predictive for the in vivo 
situation), which is possible to generate large-scale

- ‘omics data: Yes, but experimental conditions (e.g. cell 
line)/dose/time point often don’t extrapolate to relevant 
situations

- Cellular morphology data: Yes, but we need to 
understand better what the applicability domain is/which 
interventions are visible in the readout

- Organ-on-a-chip: Yes (!), but still under heavy 
development, details to be seen



Summary

- We need to analyse our data (as we did for many years before), 
absolutely!

- ‘AI’/deep learning is a valuable tool in the toolbox

- The real game changer for translation to patients will come only 
once we understand biology/biological data better (and generate it, 
and encode it, and analyse it)

- Currently a lot of computer science-driven approaches, some of 
which are more applicable in drug discovery than others (real 
translation is necessary, but also better experimental design!)

- Consortia on even larger scale are needed (for targeted data 
generation, not just sharing what is there already)



Thank you for listening!

Any questions?

Contact: ab454@cam.ac.uk

Personal email: mail@andreasbender.de 

Web: http://www.DrugDiscovery.NET

Twitter: @AndreasBenderUK


