Potent antimicrobial and anti-viral biopolymers

Collaboration Opportunities

A*STAR is seeking interest for partnerships in:

Potential Industry Sectors

- ✓ Aquaculture & Agriculture
- ✓ F&B

Technology Overview

- Broad spectrum antimicrobial biopolymers
- Anti-viral properties
- Biocompatibility
- Prevention of resistance development
- Low cost and scalablity

Key Differentiating Features

- Broad spectrum
- Short time frame to deactivate microbes
- Do not induce antimicrobial resistance

Market Potential & Value Proposition

- Cost-effective antimicrobial and anti-viral biopolymers for aquaculture and agriculture
- ✓ Food security and safety
- ✓ Increase aquaculture and agriculture production through controlling pathogens

Proposed Products/Services

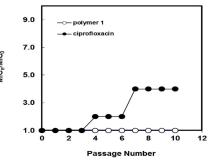
- Disease prevention
- ✓ Disease treatment

Intellectual Property

- Patents filed:
 - 1. Biodegradable polyionenes
 - 2. Cationic amines for virus treatment
 - 3. Monomeric ionenes from PET refuse for agriculture
 - 4. Repurposing PET to functional monomers that can be used to prepare degradable polyionenes

Proposed Collaboration Model

- Industry Research Collaboration Projects
- ✓ Technology Licensing



Attraction

Neutralization

Biopolymer	Minimum Inhibitory Concentration (MIC) (mg/mL)		
вюрогушег	Streptococcus iniae	Vibrio parahemolyticus	
Α	32	16	
В	4	2	

Prevention

RNA Virus	Virus Family	Cell	Polymer	EC50ª (mg/L)	CC50⁵ (mg/L)	Selectivity index (CC50/EC50)
DENV-1	Flaviviridae	LLC-MK2	polymer c	0.20±0.17	>1000	>5000
DENV-2	Flaviviridae	LLC-MK2	polymer c	0.31±0.06	>1000	>3225
DENV-4	Flaviviridae	LLC-MK2	polymer c	0.32±0.02	>1000	>3125
CHIKV	Alfa-viridae	Vero	polymer c	7.0±0.5	>1000	>143
EV71	Enteroviridae	RD	polymer c	1.1±0.1	>1000	>909
Influenza virus (A/H3N2)	Orthomyxoviridae	MDCK	polymer b	1.1±0.3	>1000	>909
Ebola	Filoviridae	A549	polymer a	12.1±6.0	42	3.5
Ebola	Filoviridae	A549	polymer f	4.7±0.8	>1000	>213
Marburg	Filoviridae	A549	polymer f	1.1±0.2	>1000	>909
DNA Virus						
HSV-1	Herpesviridae	Vero	polymer c	1.6±0.2	>1000	>625
HSV-2	Herpesviridae	Vero	polymer c	5.1±0.2	>1000	>196

Contact Details

Dr Jeremy Tan | pktan@ibb.a-star.edu.sg Dr Yi Yan Yang | yyyang@ibb.a-star.edu.sg 31 Biopolis Way, Nanos, #07-01, S(138669) +65 68247106 | www.a-star.edu.sg/ibb

Environmentally Benign Antimicrobial Polymers

Collaboration Opportunities

A*STAR is seeking interest for partnerships in:

Potential Industry Sectors

- Aquaculture & Agriculture
- F&B \checkmark
- **Environmental Surveillance**

Proposed Collaboration Model

- **Programmatic Grant Applications**
- Industry Research Collaboration Projects
- **Technology Licensing**
- Technology Validation and Adoption

Technology Overview

- Broad spectrum antimicrobial polymers
- Eco-degradable under various pH conditions
- Highly water-soluble materials
- Low cost and scalable

Key Differentiating Features

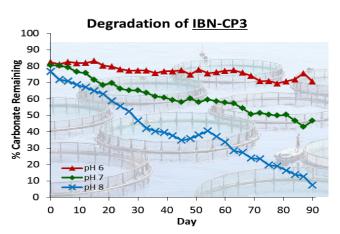
- Degradation time and conditions can be customized
- Fragments are non-active small molecules
- Do not induce antimicrobial resistance

Market Potential & Value Proposition

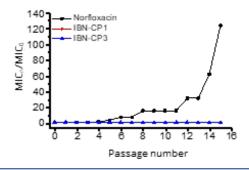
- ✓ Cost-effective green antimicrobial materials for aquaculture and agriculture, F&B and environmental application
- ✓ Contribute to food safety and food security
- ✓ Contribute to mitigate antimicrobial resistance

Proposed Products/Services

- Disease management and prevention
- ✓ Environment disinfection


Intellectual Property

- Patents filed on
 - 1. Degradable Imidazolium Polymers and **Oligomers for Antimicrobial Applications**
 - 2. Acid-Sensitive Degradable Imidazolium **Polymers for Antimicrobial Applications**



Non-active, non toxic units

Self-destruct

MIC (ppm)					
	EC	SA	PA	CA	
KY07	8	4	31	16	
FMs	2000	2000	>4000	>4000	

Contact Details Dr Yugen Zhang

ygzhang@ibb.a-star.edu.sg

31 Biopolis Way, Nanos, #07-01, S(138669)

+65 68247162 | www.a-star.edu.sg/ibb

Zebrafish Nutrition and Microbiome Discovery Platform

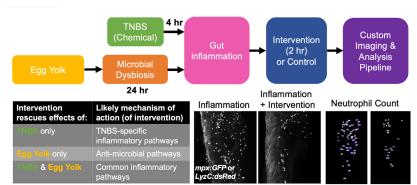
Collaboration Opportunities

A*STAR is seeking interest for partnership in:

Potential Industry Sectors

- ✓ Aquaculture
- ✓ F&B
- Human Health

Technology Overview


- High-throughput multi-modal zebrafish screening platform
 - Gut Mucosal Immunity
 - Food Intake and Behavior Monitoring
 - Energy Expenditure
 - Growth and Survival
 - Adiposity
- Nutritional / Metabolic Programming
 - > Effects on later-life health
- Microbiome
 - Pre- and pro-biotic discovery
- Neuroscience, Neuroendocrinology, Multiomics and Imaging

Relevant Publications

- Cheng, R.-K., Tan, J. X. M., Chua, K. X., Tan, C. J. X. & Wee, C. L. Osmotic Stress Uncovers Correlations and Dissociations Between Larval Zebrafish Anxiety Endophenotypes. Front. Mol. Neurosci. 15, 900223 (2022).
- Wee, C. L. et al. Social isolation modulates appetite and avoidance behavior via a common oxytocinergic circuit in larval zebrafish. Nat. Commun. 13, 2573 (2022).
- Wee, C. L. et al. A bidirectional network for appetite control in larval zebrafish. Elife 8, (2019).
- 4. Wee, C. L., Nikitchenko, M. & Wang, W. C. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nature Neuroscience (2019).
- 5. Randlett, O. et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12, 1039–1046 (2015).
- Purushothaman, K. et al. Feed Restriction Modulates Growth, Gut Morphology and Gene Expression in Zebrafish. Int. J. Mol. Sci. 22, (2021).
- Jordi, J. et al. A high-throughput assay for quantifying appetite and digestive dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R345–57 (2015).

Proposed Collaboration Model

- Programmatic Grant Applications
- ✓ Industry Research Collaboration Projects
- Technology Validation and Licensing

Example of a screening platform for discovery of interventions promoting gut mucosal and microbial health

Key Differentiating Features

- High Throughput
- Comprehensive
- Mechanistic
- Discovery of Novel and Effective Dietary Supplements
- Discovery of Novel and Effective Early-life Interventions

Market Potential & Value Proposition

- ✓ Identification of cost-effective nutritional or probiotic interventions (e.g. natural products)
- Validation and mechanistic Investigation of screening hits in zebrafish and aquaculture models

Proposed Products/Services

- Screening and Validation Services
- ✓ Nutritional / Probiotic Product Development

Contact Details

Dr Caroline Wee | weel@imcb.a-star.edu.sg

- 61 Biopolis Drive, Proteos, #08-13B,
- S(138673)

+65 6586 9548 | www.carolineweelab.com

Rapid Microbial Sensors

Collaboration Opportunities

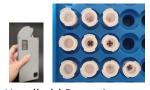
A*STAR is seeking interest for partnership in:

Potential Industry Sectors

Proposed Collaboration Model

- ✓ Aquaculture
- ✓ Agritech
- ✓ F&B
- ✓ Environmental Surveillance

Technology Overview

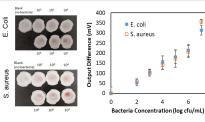

- Nanoparticle based rapid microbial sensors with fast turnover time (< 30 min)
- Coupling microbial cell detection and metabolite detection

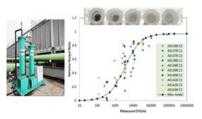
Key Differentiating Features

- Culture-free; enzyme-free
- Customizable nanoparticle reagents' surface functionality for general bacteria counting and for specific bacteria detection
- Portable detector for quantification
- Automated design for remote monitoring

Proposed Products/Services

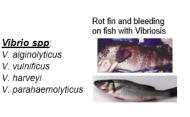
 On-site bacteria counting for intervention optimization; e.g., aquaculture pathogen control and water treatment analysis

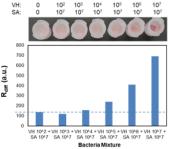



Handheld Bacteria sensor

Intellectual Property

- ✓ Patents and TDs/Know-hows on:
 - Nanoparticle reagents targeting various bacteria cells
 - Assay protocol for water detection and air detection
- Prototype handheld sensor and Automated sensors


- ✓ Programmatic Grant Applications
- Industry Research Collaboration Projects
- Technology Validation and Licensing



Nanoparticle-based sensor for general bacteria, demonstrated on E. coli and S. aureus

General bacteria counting from cooling tower water

Nanomaterial-based sensor for rapid detection of Vibrio spp.

Market Potential & Value Proposition

- Cost effective and portable device for bacteria counting for in industrial water, environmental water, aquaculture and farm water
- ✓ On-site "sample-to-result" for immediate decision making
- ✓ Coupling with intervention (disinfection, etc.) to provide full mitigation solution
- ✓ Examples: water monitoring in various industries; potentially for air and surface monitoring as environmental surveillance tool.

Contact Details

Dr Su Xiaodi | xd-su@imre.a-star.edu.sg Dr Laura Sutarlie | laura-sutarlie@imre.a-star.edu.sg 2 Fusionopolis Way, Innovis, #08-03, S(138634) +65 65011800 | www.a-star.edu.sg/imre

Collaboration Opportunities A*STAR is seeking interest for partnership in:

Potential Industry Sectors

Proposed Collaboration Model

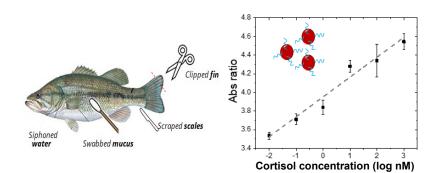
- ✓ Aquaculture
- ✓ Animal welfare
- ✓ Healthcare

Technology Overview

- Nanomaterial-based sensor targeting fish stress hormone (cortisol)
- Non-invasive stress monitoring with samples from fish fin, mucus, scales, fish tank water
- Tested in Asian seabass samples, with correlation to HPLC/ELISA

Key Differentiating Features

- Rapid (< 30 min turnover time), faster than ELISA (4 h)
- Single-reagent, one step "mix-andmeasure"
- Current limit of detection (LOD) 100 pM (suitable for fish plasma, fin, mucus, scale, fish tank water)
- Enzyme free, robust, not sensitive to pH and temperature changes


Intellectual Property

- Nanoparticle sensor for fish stress hormone (TD in preparation)
- Fish cortisol sampling methods (TD in preparation)

Proposed Products/Services

- ✓ Baseline measurement of fish stress
- ✓ Field deployable stress hormone sensor for on-site monitoring

- Programmatic Grant Applications
- Industry Research Collaboration Projects
- Technology Validation and Licensing

Aptamer-metal nanoparticle-based cortisol sensor

Market Potential & Value Proposition

- Non-invasive/less invasive and cost-effective stress monitoring
- ✓ Rapid "sample-to-result" and on-site monitoring for immediate decision making
- ✓ Enhance stress management and farming condition (e.g., water quality management, stocking density, feeding, etc.) towards healthier fish and higher aquaculture productivity
- ✓ Identification and optimization of stress-reducing interventions

Contact Details

^a Dr Laura Sutarlie | <u>laura-sutarlie@imre.a-star.edu.sg</u>

- ^a Dr Su Xiaodi | <u>xd-su@imre.a-star.edu.sg</u>
- ^b Dr Caroline Wee| <u>weel@imcb.a-star.edu.sg</u>
- ^a 2 Fusionopolis Way, Innovis, #08-03, S(138634) +65 65011800 | www.a-star.edu.sg/imre
- ^b 61 Biopolis Drive, Proteos, #08-13B, S(138673)
- +65 6586 9548 | www.carolineweelab.com

A Microbial Bioconversion Platform: Valorization of waste biomass into microbial and insect ingredients for use in aquafeeds

Collaboration Opportunities

A*STAR is seeking interest for partnership in Aquafeed & Aquaculture

Potential Industry Sectors

- ✓ Aquafeed producers
- ✓ Aquaculture operators
- Waste biomass producers
- Industrial biotechnology industry

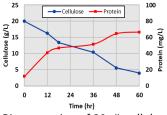
Technology Overview

- Two-step bioconversion of waste to single cell protein for use in aquafeed
 - Step 1: Anaerobic cellulose conversion to soluble short-chain fatty acids (SCFA)
 - Step 2: Culturing of food-grade microorganisms for single cell protein
- Microorganisms can be selected for protein, oil or amino acid production
- Products from either step can be used as feed for insect protein production
- High feed-conversion ratios for insects reared on single cell protein feeds

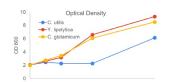
Key Differentiating Features

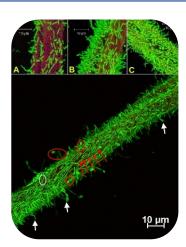
- Low/no cost waste biomass as raw materials
- Homogenous products from varied wastes
- Robust technology for varied waste biomass
- Self-sterilizing process & low food safety risk
- High insect conversion rates, quality and yield
- Sustainable process for aquafeed ingredients

Market Potential & Value Proposition


- ✓ Upcycling of low/no cost waste biomass to single cell protein or insects for use in aquafeed formulations
- ✓ Tunable nutritional profile of intermediate products by varying waste and microorganism in bioconversion
- Potential for immune-boosting properties in products e.g. antioxidants from waste biomass

Proposed Products/Services


- ✓ Technology for low-cost single cell protein
- ✓ Technology for low-cost insect production
- ✓ Technology for bioactive aquafeed ingredients
- $\checkmark\,$ Technology for luxury feed for ornamental fish


Proposed Collaboration Model

- Programmatic Grant Applications
- Industry Research Collaboration Projects
- Gap funding for co-development
- Technology Licensing

Bioconversion of 20g/L cellulose by cellulolytic soil community

Food-grade microorganisms cultured on SCFA from cellulose

C. thermocellum biofilm formation on cellulose cotton fibers over 48 hrs

Intellectual Property

- E.C. Peterson. "Microbial bioconversion of biomass for single cell protein". 2021. Technology Disclosure SIFBI/Z/12799.
- E.C. Peterson, A. Thong, C. Hermansen. "Production of Single Cell Protein and Oil from Short Chain Fatty Acids". 2022. Technology Disclosure.
- E.C. Peterson, N. Phua, C. Hermansen. "Production of black soldier fly larvae from lignocellulosic single cell protein". 2022. Technology Disclosure.

Christian Eric Ashriel A	Aaron Cole	en Megan
--------------------------	------------	----------

Contact Details Dr Christian Hermansen

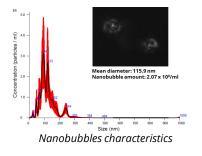
Circular Bioeconomy Team Lead 31 Biopolis Way, #01-02, Nanos, S(138669) +65 64074170 | https://www.a-star.edu.sg/sifbi/

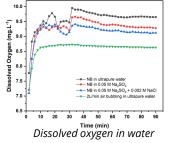
Multi-physics Water Treatment (MWT) for **Intensive Recirculating Aquaculture System**

Collaboration Opportunities

A*STAR is seeking interest for partnership in:

Potential Industry Sectors

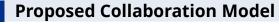

- Land-based Aquaculture
- ✓ Food Processing
- Water Remediation


Technology Overview

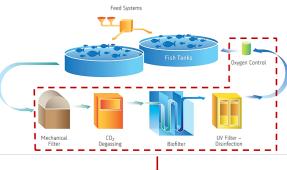
- Low energy cost, low chemical input and non-biological solution for water management in recirculating aquaculture system to achieve intensive fish stock density
- Leverage on synergistic effect of electrochemical advanced oxidation process (EAOP), nanobubbles and filtration

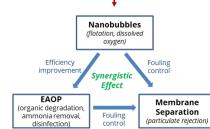
Key Differentiating Features

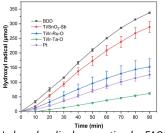
- Non-biological water treatment process to minimize setup conditioning time and bio-sludge generation
- Higher fish stock density in RAS by supersaturated dissolved oxygen in water
- Mechanical filter fouling prevention, higher energy efficiency and higher water recirculating rate through synergistic effect of the hybrid process



Market Potential & Value Proposition


- ✓ Energy and water efficient process to improve fish stock density and bridge the gap of long payback period of current RAS
- Compatibility and scalability to be incorporated into current RAS infrastructure
- ✓ Lower carbon footprint in achieving sustainability of land-based aquaculture


Intellectual Property


- Novel anode material for electrochemical oxidation of aqueous ammonia/ammonium and organics
- Prototype for hybrid EAOP, nanobubbles and filtration water treatment process

- Programmatic Grant Applications
- Industry Research Collaboration Projects
- **Technology Validation and Adoption**

Process test bedding

Hydroxyl radical generation by EAOP

Proposed Products/Services

- Process and setup customization to improve the energy and water efficiency in freshwater and seawater RAS
- ✓ Analytics of water quality in aquaculture and urban farming

Contact Details

Dr Wu Weiyi | wu weiyi@simtech.a-star.edu.sg Singapore Institute of Manufacturing Technology (SIMTech) 2 Fusionopolis Way, #08-04, Innovis, S(138634) www.a-star.edu.sg/simtech

Process illustration