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Renal dysfunction in heart failure with preserved ejection fraction (HFpEF) is common and is associated with increased mortality. Impaired
renal function is also a risk factor for developing HFpEF. A new paradigm for HFpEF, proposing a sequence of events leading to myocardial
remodelling and dysfunction in HFpEF, was recently introduced, involving inflammatory, microvascular, and cardiac components. The kidney
might play a key role in this systemic process. Renal impairment causes metabolic and systemic derangements in circulating factors, causing an
activated systemic inflammatory state and endothelial dysfunction, which may lead to cardiomyocyte stiffening, hypertrophy, and interstitial
fibrosis via cross-talk between the endothelium and cardiomyocyte compartments. Here, we review the role of endothelial dysfunction and
inflammation to explain the link between renal dysfunction and HFpEF, which allows for identification of new early risk markers, prognostic
factors, and unique targets for intervention.
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Introduction
The co-existence of heart failure and renal impairment in patients
presenting with fluid overload is well known. This may be due to
the impact of common risk factors (e.g. diabetes mellitus) on both
end-organ systems, heart failure causing renal dysfunction (e.g. via
renal hypoperfusion), or, conversely, renal failure causing cardiac
dysfunction (e.g. via uraemic toxins, increased afterload).1–3 Com-
bined heart and kidney failure in patients poses several clinical
challenges, including diagnostic difficulties and therapeutic dilem-
mas, since many proven heart failure medications may cause, or
are contraindicated in the presence of, renal failure. The cardiore-
nal interaction has mainly been studied in heart failure with reduced
ejection fraction (HFrEF). However, renal impairment is observed
in a great number of patients with heart failure with preserved
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. ejection fraction (HFpEF) and is associated with an increased risk

of mortality.4–6 Interestingly, impaired renal function was recently
also identified as a risk factor for developing HFpEF.7 This review
aims to describe the current knowledge, pathophysiology, and
future perspectives of the relationship between renal dysfunction
and HFpEF. Some of the described mechanisms may not be unique
for the relationship between renal dysfunction and HFpEF, and
might also apply to HFrEF. Nevertheless, this review will not dis-
cuss specific mechanisms related to the relationship between renal
dysfunction and HFrEF.

Epidemiology
In large observational cohorts, chronic kidney disease (CKD)
[defined as an estimated glomerular filtration rate (eGFR)
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<60 mL/min/1.73 m2] is observed in 26–49% of patients with
HFpEF.4,5 This is similar to rates observed in HFrEF patients.8 In
a contemporary HFpEF population, impairment of renal function,
defined as an eGFR <60 mL/min/1.73 m2 or albuminuria, was
present in 62% of patients; of these, 26% had albuminuria with
normal eGFR.9 The described prevalence of CKD in different
HFpEF cohorts varies greatly (Table 1), possibly due to different
inclusion criteria, settings, and cut-off points for HFpEF and CKD.
Several studies have investigated the association of impaired renal
function and mortality in HFpEF patients. Hillege et al. found an
association between impaired renal function and increased risk for
death, cardiovascular death, and hospitalization for heart failure in
HFpEF, similar to rates observed in HFrEF.10 Multiple other studies
have since confirmed these findings; some even suggest a greater
prognostic importance of CKD in patients with a preserved EF.11

A meta-analysis, involving >1 million patients with heart failure,
found that CKD was associated with an odds ratio (OR) of 3.22
[95% confidence interval (CI) 2.66–3.90] for all-cause mortality
in patients with an EF >40%, compared with ORs of 2.00 (95%
CI 1.81–2.21) and 2.56 (95% CI 2.24–2.93) for an EF <30% and
between 30% and 40%, respectively.11 In the meta-regression anal-
ysis performed in this study, a higher EF modified the relationship
between renal impairment and clinical outcome in such a way
that the association with outcome was significantly stronger in
patients with higher EF. Of note, in a hypothesis-free approach
using phenotype mapping to identify distinct ‘naturally occurring’
HFpEF categories, Shah et al. showed that the phenotype of HFpEF
with CKD was distinctly different and associated with the poorest
outcome.12

Recent studies have focused not only on baseline renal func-
tion, which is—most of the time—non-modifiable, but also on
worsening of renal function (WRF) over time. Several definitions
of WRF have been used, the most common being an increase in
creatinine ≥0.3 mg/dL; however, recent studies often also include a
relative change.13 WRF has been associated with increased mortal-
ity in the general (acute and chronic) heart failure population, but
data on WRF in HFpEF are limited (Table 2). Recently, Voors et al.
found an overall incidence of 15% of WRF, defined as an increase
in creatinine ≥0.3 mg/dL and/or >25% at any time point after initia-
tion of LCZ696 or valsartan in HFpEF.14 In a retrospective analysis
of the Irbesartan in Heart Failure with Preserved Ejection Fraction
(I-PRESERVE) trial, Damman et al. found a similar incidence of WRF,
defined as an increase in creatinine ≥0.3 mg/dL and a reduction in
eGFR ≥25%, compared with HFrEF patients, and the relationship
between WRF and outcomes in HFpEF was also similar to what
was previously shown in HFrEF, although different with regard to
the association with ARB therapy, which was associated with an
increased risk of WRF in HFpEF.15 Furthermore, in HFpEF patients
with a low eGFR, WRF during hospitalization is especially associ-
ated with a poor prognosis.16

Impaired renal function is not only a risk factor in patients
with HFpEF, but it is also a risk factor for developing HFpEF.7

In PREVEND, a large community-based cohort, including 8592
subjects, during a median follow-up of 11.5 years, 34% of this
population was diagnosed with new-onset HFpEF. A poorer renal
function, as assessed by cystatin C and albuminuria, was a strong ..
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.. risk factor for developing HFpEF, but not for HFrEF. Moran et al.
previously described an association between higher cystatin C
levels and both new-onset HFrEF and HFpEF.17 In a post-hoc
analysis from the Framingham Heart Study, it was found that renal
function, although slightly lower in patients with new-onset HFpEF
compared with new-onset HFrEF, was not associated with HFpEF
onset in multivariable analysis.18 A study investigating predictors of
heart failure onset identified the urinary albumin to creatinine ratio
as a key risk factor for new-onset heart failure; however, this study
included both HFpEF and HFrEF patients.19 To our knowledge,
more studies investigating new-onset HFpEF and renal function are
currently lacking.

Based on these data, we can conclude that the association
between renal dysfunction and heart failure is at least as strong
in HFpEF as in HFrEF.

Pathophysiology of heart failure
with preserved ejection fraction
The pathophysiology of HFpEF remains incompletely understood.
Recently, several studies have identified a relationship between
endothelial dysfunction, chronic low grade systemic inflammation,
diastolic dysfunction, and HFpEF.

Endothelium
The endothelium is involved in diverse activities, among which
are vasomotor, haemostatic, antioxidant, and inflammatory
functions.20 Healthy endothelium has anti-inflammatory proper-
ties, whereas dysfunction of the endothelium promotes interaction
with circulating inflammatory cells.21 Murdoch et al. recently
showed that activation of endothelial NAD phosphate oxidase-2
enhances cardiac inflammation.22 Additionally, inflammation elic-
its endothelial dysfunction, as proinflammatory cytokines cause
endothelial production of reactive oxygen species (ROS), resulting
in endothelial dysfunction.23

The endothelium also regulates vascular tone, mainly by releas-
ing nitric oxide (NO), in response to various stimuli.24 Together
with its paracrine effects, the endothelium therefore has a profound
impact on cardiac function.25,26 The endothelium is also involved in
sodium handling through the endothelial glycocalyx and the gly-
cosaminoglycan network. Sodium is able to bind to the endothe-
lial glycocalyx and is subsequently passed through the endothelial
cell into the extracellular matrix.27,28 Increased sodium concentra-
tion in the endothelial cell—for instance caused by high plasma
sodium concentration or increased aldosterone levels—causes
stiffening of the endothelial cell, decreased NO levels, and ulti-
mately disruption of the endothelial glycocalyx, resulting in vascular
dysfunction.29,30 This consequently leads to increased microvascu-
lar resistance and extravascular fluid accumulation.

A number of studies have demonstrated a higher prevalence
of endothelial dysfunction in HFpEF compared with controls.31

An impaired endothelial function was observed in HFpEF and
hypertensive patients compared with controls by Borlaug et al.,
which was in contrast to the available data at the time.32 Shortly
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Table 1 Prevalence of chronic kidney disease in different heart failure with preserved ejection fraction populations

Study Setting Definition
of HFpEF

No. with
HFpEF

Definition of
renal dysfunction

Incidence of
renal dysfunction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Population based
Ather et al. (2012)4 Across USA, heart failure

outpatients
LVEF ≥50% 2843 eGFR <60 mL/min/1.73 m2 49%

Carrasco-Sanchez et al. (2011)112 Single centre in Spain, acute
heart failure

LVEF >45% 218 eGFR <60 mL/min/1.73 m2 48%

Rusinaru et al. (2011)16 Across France, first
hospitalization for acute
heart failure

LVEF ≥45% 358 eGFR <60 mL/min/1.73 m2 53%

Unger et al. (2016)113 Northwestern University
cohort,
post-hospitalization for
acute heart failure

LVEF >50% 299 eGFR <60 mL/min/1.73 m2 48%

Registry
Lenzen et al. (2004)114 EuroHeart Failure survey,

acute heart failure
LVEF ≥40% 3148 Serum creatinine

≥200 μmol/L
5%

Yancy et al. (2006)5 ADHERE registry, acute
heart failure

LVEF ≥40% 26 322 Serum creatinine >2.0 mg/dL 26%

Clinical trial
Ahmed et al. (2007)115 DIG trial, chronic heart

failure
LVEF >45% 988 eGFR <60 mL/min/1.73 m2 45%

Gori et al. (2014)9 PARAMOUNT study,
symptomatic chronic heart
failure

LVEF ≥45% 217 eGFR <60 mL/min/1.73 m2

Albuminuria >17 mg/g (men)
or >25 mg/g (women)

46%
39%

Hillege et al. (2006)10 CHARM-Preserved,
symptomatic chronic heart
failure

LVEF >40% 1087 eGFR <60 mL/min/1.73 m2 35%

Massie et al. (2008)116 I-PRESERVE, symptomatic
chronic heart failure

LVEF ≥45% 4128 eGFR <60 mL/min/1.73 m2 30%

Shah et al. (2013)117 TOPCAT, symptomatic
chronic heart failure

LVEF ≥45% 3445 eGFR <60 mL/min/1.73 m2 39%

eGFR, estimated glomerular filtration rate; HFpEF, heart failure with preserved ejection fraction.

after this, Akiyama et al. found significantly more endothelial
dysfunction (defined as a reactive hyperaemia index below the
median value of 0.49) in patients with HFpEF compared with
controls.33 In addition, endothelial dysfunction had strong prog-
nostic value in these patients with HFpEF. A recent autopsy-based
study by Mohammed et al. compared HFpEF patients with
age-matched controls.34 In this study, HFpEF patients had more
hypertrophy, modest myocardial fibrosis, and coronary microvas-
cular rarefaction—an imbalance between vessel destruction
and regeneration—assessed by lower microvascular density.
Microvascular endothelial dysfunction is associated with microvas-
cular rarefaction, and this finding therefore supports the notion
of endothelial dysfunction in HFpEF.35 In addition, systemic capil-
lary rarefaction enforces HFpEF as a systemic disease, driven by
endothelial dysfunction and inflammation.36 Many of the cardiovas-
cular risk factors associated with HFpEF, such as diabetes, obesity,
dyslipidaemia, smoking, hypertension, and CKD, potentially cause
endothelial dysfunction, and microvascular rarefaction.37–39

Taken together, HFpEF is strongly associated with endothelial
dysfunction. ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. Inflammation
The association between inflammation and HFpEF has been sup-
ported by a number of studies that showed increased levels of
inflammatory markers in HFpEF patients.40 Kalogeropoulos et al.
showed that interleukin-6 (IL-6) and tumour necrosis factor-𝛼
(TNF-𝛼) were strongly associated with the risk of new-onset
HFpEF, which was stronger than the risk of new-onset HFrEF.41

Other studies revealed higher levels of inflammatory biomark-
ers such as IL-6, IL-8, monocyte chemoattractant protein-1,
pentraxin-3, ST2, and TNF-𝛼 receptor 2 in HFpEF patients, com-
pared with patients with either hypertension, dyspnoea of other
causes, or HFrEF, or healthy controls.42–45 Many co-morbidities
in HFpEF, such as obesity, diabetes, hypertension, and CKD, are
known to promote chronic low-grade inflammation. Inflamma-
tion, through cytokines, causes the endothelium to produce ROS.
This, in turn, induces oxidative inactivation of NO, as superoxide
anions react with NO and form peroxynitrite, which is supported
by the recent finding of high nitrotyrosine expression in HFpEF
myocardium.46 So, HFpEF is strongly associated with inflammation.
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Table 2 Worsening renal function in heart failure with preserved ejection fraction

Reference Title Definition of WRF Main findings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Voors et al. (2015)14 Renal effects of the angiotensin
receptor neprilysin inhibitor
LCZ696 in patients with heart
failure and preserved EF

Serum creatinine increase of >0.3 mg/dL
and/or >25% after 12 or 36 weeks of
treatment

15% of patients developed WRF at any
time point.

The incidence of WRF was lower in the
LCZ696 group (12%) compared with
the valsartan group (18%).

Damman et al. (2014)15 WRF and outcome in heart failure
patients with preserved EF and
the impact of ARB treatment

Absolute increase of serum creatinine of
≥0.3 mg/dL (≥26.5 μmol/L), together
with a relative increase in serum
creatinine of ≥25% between baseline
and 8 weeks

6.4% of patients developed WRF.
The incidence of WRF was more

frequent with irbesartan treatment
(8% vs. 4%).

Rusinaru et al. (2011)16 Renal function and long-term
survival after hospital discharge in
heart failure with preserved EF

A ≥25% decrease in eGFR from
admission to discharge

12% of patients developed WRF during
hospitalization.

WRF was independently predictive of
mortality.

eGFR, estimated glomerular filtration rate; WRF, worsening renal function.

A new paradigm
The relationship between inflammation, endothelial function, and
HFpEF is intriguing and has led to the proposal of a new paradigm
for HFpEF. This paradigm, introduced by Paulus and Tschope,
involves a chain of events leading to myocardial remodelling and
dysfunction in HFpEF (Figure 1).47 In brief, common co-morbidities
in HFpEF, such as obesity, hypertension, diabetes mellitus, COPD,
and iron deficiency, induce an inflammatory state. This systemic
inflammatory state causes the coronary microvascular endothe-
lium to produce ROS, which reduces NO bioavailability and
increases peroxynitrite. The consequent reduction in stimulation
of cGMP production by soluble guanylate cyclase results in lower
protein kinase G (PKG) activity.48 Since PKG functions as a con-
straint on myocardial hypertrophy, lower myocardial PKG activity
causes remodelling, impaired relaxation, and myocardial stiffness.47

Finally, fibrosis, due to microvascular inflammation (and the con-
sequent influx of inflammatory cells), and cardiomyocyte stiffening
together lead to diastolic dysfunction. Furthermore, autocrine and
paracrine factors, such as apelin, transforming growth factor-𝛽, and
endothelin-1, from the endothelium have an effect on the develop-
ment of cardiac hypertrophy.49

This process is distinctly different from HFrEF, where myocardial
remodelling occurs as a consequence of cardiomyocyte death, per-
turbation in calcium cycling, and contractile dysfunction (Figure 1).
The components of the paradigm are all part of an overarching
systemic process, of which many are present in CKD.

The renal connection
How heart failure with preserved
ejection fraction might cause renal
dysfunction
In advanced HFpEF, elevated left- and right-sided filling pres-
sures are the predominant haemodynamic features.50 An increased ..
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.. central venous pressure has been associated with impaired renal

function, and is a risk factor for decreased or worsening renal
function.51–53 This has been observed for patients both with a
reduced and with a preserved EF.53 Elevated central venous pres-
sure potentially causes a decreased renal blood flow and renal per-
fusion pressure, and activates the renin–angiotensin–aldosterone
system (RAAS) and the sympathetic nervous system, leading to a
reduction in GFR.54 Additionally, higher central and renal venous
pressure raises intrarenal interstitial pressures, leading to renal
interstitial fibrosis and increased tubular pressure, further reduc-
ing GFR.13 Importantly, high central venous pressure may be even
more important than reduced cardiac output, and the associa-
tion between central venous pressure and reduced GFR was sig-
nificantly stronger in patients with relatively preserved cardiac
output.53 Additionally, right ventricular dysfunction in HFpEF is
common and has been shown to be associated with impaired
contractility, elevated right ventricular afterload, and lower eGFR,
which may be caused by elevated central venous pressure as a con-
sequence of right ventricular failure.55 Another key haemodynamic
feature of HFpEF is decreased systolic filling, resulting in inadequate
stroke volume reserve, and ultimately causing a decreased cardiac
output. Furthermore, increasing end-diastolic volume in HFpEF
patients requires a remarkable increase in filling pressures. In peri-
ods of increased demand, such as exercise, the HFpEF heart is
therefore unable to increase cardiac output sufficiently.56,57 This is
due to a steep diastolic pressure–volume relationship and a steep,
almost vertical end-systolic pressure–volume relationship, leading
to a fixed stroke volume, and insufficiently increased volumes dur-
ing exercise.58 Consequently HFpEF patients have a greater depen-
dence on preload, and reductions in this, such as by administration
of vasodilators, results in a greater drop in stroke volume, and
blood pressure reduction, despite high filling pressures.59 A fluc-
tuation in preload may therefore dramatically reduce renal blood
flow, and ultimately results in renal dysfunction. Other contribu-
tors are, among others, chronotropic incompetence, which was
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Figure 1 Myocardial remodelling in heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction
(HFrEF). IL-6, interleukin 6; TNF-𝛼, tumour necrosis factor-𝛼; sST2, soluble ST2; ROS, reactive oxygen species; ONOO−, peroxynitrite; VCAM,
vascular cell adhesion molecule; NO, nitric oxide; sGC, soluble guanylate cyclase; cGMP, cyclic guanosine monophosphate; PKG, protein kinase
G. Reprinted with permission from Elsevier.47

recently associated with decreased eGFR in a HFpEF population,
suggesting that autonomic dysfunction may lead to both reduced
heart rate reserve and directly or indirectly to impaired kidney
function.60 Additionally, increased ventricular stiffness and arterial
stiffness are commonly coupled in HFpEF patients, resulting in a
system in which pressure and load changes are more dramatic,
and may therefore negatively affect renal perfusion and function.61

Decreased cardiac output results in decreased organ perfusion and
therefore diminished renal blood flow.62,63 Low NO availability in
the kidney also reduces renal blood flow.64 Renal blood flow is
an important factor in determining GFR in patients with heart
failure.51 Under normal circumstances, the kidney is able to main-
tain GFR by autoregulation of its afferent and efferent arterioles.65

However, due to RAAS inhibitors, such as ACE inhibitors, the
efferent component of this autoregulatory mechanism is disrupted.
Therefore, in line with other patients on RAAS blockade, GFR in
patients with heart failure is more directly influenced by the sys-
tematic circulatory status and blood pressure than in subjects with
an intact autoregulation, although direct evidence in HFpEF is cur-
rently lacking. Lower blood pressure can still impact renal function
in patients with HFpEF, and probably affects renal function more
than in HFrEF. Since cardiac output in patients with HFpEF is largely
preload dependent, we may hypothesize that arterial and intrac-
ardiac underfilling, lower blood pressure, together with vascular
stiffness and impaired ventricular–vascular coupling may reduce ..
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.. cardiac output and thereby renal blood flow. Finally, episodes of
acute kidney injury, for instance caused by therapy for decom-
pensated HFpEF, may ultimately contribute to the development
of CKD.

How renal dysfunction might cause heart
failure with preserved ejection fraction
Chronic kidney disease is a highly prevalent co-morbidity in
HFpEF, and CKD is, similar to HFpEF, associated with endothelial
dysfunction and inflammation. Microvascular dysfunction can be
caused by CKD, through interaction with co-morbidities such
as diabetes mellitus and hypertension, or through renal specific
mechanisms. The effects and mechanisms through which factors
associated with CKD may cause renal function differ across stages
of CKD. In patients with mild CKD or even normal renal function
with microalbuminuria, high levels of fibroblast growth factor 23
(FGF23), which is involved in the control of serum phosphate
and vitamin D, have been shown to cause endothelial dysfunction
by increasing superoxide and decreasing NO bioavailability.66,67

Also, vitamin D deficiency has been associated with systemic
inflammation, endothelial dysfunction, and LV remodelling.68,69 As
kidney function deteriorates, abnormalities in the bone–mineral
axis accelerate and, in addition to FGF23 and vitamin D, elevated
levels of phosphorus and parathyroid hormone have also been

© 2016 The Authors
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associated with ventricular hypertrophy and fibrosis.70 Renal
dysfunction may also mediate the development of HFpEF through
renally induced erythropoietin deficiency, as this has an effect on
endothelial dysfunction, NO availability, and inflammation.71 Addi-
tionally, proteinuria is a sign of endothelial disruption and has been
shown to be a risk factor for heart failure.72 The effect and role
of proteinuria may vary in different stages of CKD. Proteinuria has
been associated with elevated levels of inflammatory markers, such
as C-reactive protein, and asymmetric dimethylarginine, an inflam-
matory biomarker that also has the potential to cause endothelial
dysfunction through inhibition of NO.73,74 Recently, an endothelial
nitric oxide synthase (NOS) Glu298Asp single nucleotide polymor-
phism genotype has been associated with cardiac remodelling in
patients with early CKD.75 CKD causes sympathetic nervous acti-
vation and, as such, may have direct effects on the development of
heart failure, as well as indirect effects through its negative effects
on endothelial function.76,77 Some animal studies have demon-
strated that administration of a beta-adrenergic agonist resulted
in diastolic dysfunction.78 To date, no human studies are available
that have studied the association between increased sympathetic
nervous system activity and HFpEF onset. There is, however,
evidence of increased sympathetic nervous system activity, such
as elevated serum noradrenaline levels in patients with HFpEF.79

In more severe CKD, impaired renal clearance causes retention
of uraemic toxins, and increases in circulating levels of these
uraemic toxins are associated with chronic inflammation, through
uraemia-associated proinflammatory cytokines and inhibition of
endothelial proliferation.80 Furthermore, uraemic toxins increase
ROS in vascular endothelial cells, and thereby cause oxidative
stress.81 Uraemic toxins have also been shown to cause vascular
smooth muscle cell dysfunction.82 Not only uraemic toxins, but
also urinary sodium retention and altered levels of renal endocrine
factors, and serum calcium and phosphate, have all been linked to
microvascular dysfunction.83,84 Furthermore, a wide range of stud-
ies indicate a relationship between CKD and endothelial oxidative
stress, impaired NO availability, and reduced endothelial cell
survival and regeneration, as well as effects on the immune system,
leading to a chronic low-grade inflammatory state that leads to
and amplifies microvascular dysfunction.71,85,86 Moreover, patients
with nephrotic range proteinuria were found to have impaired
endothelial function, which is not corrected by administration
of L-arginine (a naturally occurring NOS inhibitor), suggesting
that other factors also contribute to this.87–89 In the Chronic
Renal Insufficiency Cohort study, large artery stiffness was an
independent predictor of incident heart failure in CKD patients.90

Interestingly, the presence of LV hypertrophy increases with
declining renal function, and LV mass has been shown to increase
in haemodialysis patients with dialysis duration.91 This might be
caused by uraemic toxins, RAAS activation, or pressure overload,
or by dialysis itself, as dialysis has been shown to cause regional
myocardial stunning, probably due to microvascular dysfunction.92

Also, regional LV systolic dysfunction in haemodialysis patients
has been associated with a proinflammatory cytokine profile.93

Additionally, in patients on haemodialysis, interaction with the
dialysis membrane results in complement activation, which results
in microinflammation and may ultimately result in vascular stiffness ..
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.. and endothelial dysfunction.94 Renal failure causes accumulation
of advanced glycation end-products (AGEs), due to decreased
clearance of AGE degradation products, and increased oxidative
stress.95,96 AGEs may induce HFpEF by causing fibrosis through
cross-linking in the extracellular matrix, by activation of their
receptor which has a proinflammatory effect, or by causing a
delay in calcium uptake.97,98 AGEs also influence endothelial func-
tion by reducing NO availability.99 Finally, in more severe renal
failure, for instance with overt proteinuria, the above-described
processes will be more pronounced, and underlying diseases such
as hypertension may be sustained by renal dysfunction, hence
amplifying their detrimental effects on cardiac function. Some of
the above-described processes may also set in motion processes
leading to the development of HFrEF, as some underlying mecha-
nisms are overlapping. Taken together, CKD induces abnormalities
in inflammation, and endothelial dysfunction, which could all result
in HFpEF.

Common mechanisms linking renal
dysfunction to heart failure
with preserved ejection fraction
Heart failure with preserved ejection fraction might lead to renal
dysfunction and vice versa, but a third option is the presence of
common denominators causing both HFpEF and CKD. Endothe-
lial dysfunction may cause cardiac dysfunction, as described earlier,
however, it may also affect renal function.100 Endothelial dysfunc-
tion and inflammation, for instance caused by diabetes or hyperten-
sion, may be present without clinical signs and symptoms of heart
failure or renal failure. Therefore, a subtle decline in renal function,
microalbuminuria, or LV hypertrophy, may be a sign of common
underlying factors causing endothelial dysfunction and ultimately
both HFpEF and CKD. An underlying common mechanism might
also be systemic and possible renal fibrosis. A marker of (cardiac)
fibrosis, galectin-3, has been shown to precede the development
of both CKD and incident HFpEF.101,102 Infusion of galectin-3 in a
rat model of hypertensive HF induces severe LV fibrosis and LV
dysfunction.103 Similarly, galectin-3 has been linked to the devel-
opment of renal fibrosis, and inhibition of galectin-3 in rats was
found to protect against hypertensive nephropathy, and resulted
in reduced proteinuria, improved renal function, and decreased
renal damage.104,105 In patients with HFpEF, galectin-3 levels were
associated with severity of renal dysfunction, however not with
cardiac structure, after correction for renal function.106 The direct
effect of galectin-3 on cardiac structure therefore remains uncon-
firmed; however, hypothetically, a profibrotic pathway, indicated
by elevated levels of fibrosis markers such as galectin-3 activity,
might also be involved in the relationship between renal dysfunc-
tion and HFpEF. In summary, the interaction between HFpEF and
the kidney might be bidirectional, or due to common mechanisms
underlying both. Additionally, the interaction between underlying
factors also changes over time and with different stages of CKD
and HFpEF progression, making this a highly complex process. The
specific mechanisms driving the interaction between renal function
and HFpEF are still poorly understood.

© 2016 The Authors
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Figure 2 Proposed relationship between renal dysfunction and heart failure with preserved ejection fraction (HFpEF). The direction of
causality may prove to be in the opposite direction and most probably will be bidirectional. IL-6, interleukin-6; TNF𝛼, tumour necrosis factor-𝛼;
sST2, soluble ST2; ROS, reactive oxygen species; NO, nitric oxide; cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; TGF𝛽,
transforming growth factor-𝛽.

RECONNECT
To address the large knowledge gaps regarding the pathophysi-
ology of the interaction between HFpEF and renal dysfunction,
the renal connection to microvascular disease and heart failure
with preserved ejection fraction (RECONNECT) consortium was
recently formed. The RECONNECT consortium aims to investi-
gate the mechanisms underlying the connection between the sys-
temic consequences of renal dysfunction, coronary microvascular
dysfunction, and HFpEF (www.reconnect-umc.eu). The proposed
hypothesis of RECONNECT is presented in Figure 2; it must be
noted that the direction of causality may prove to be in the oppo-
site direction, or bidirectional. Renal impairment causes metabolic
and systemic abnormalities in circulating factors, inducing an acti-
vated systemic inflammatory state and microvascular dysfunction,
which may lead to cardiomyocyte stiffening, hypertrophy, and inter-
stitial fibrosis via cross-talk between the microvascular and car-
diomyocyte compartments. The RECONNECT consortium will
specifically test the hypothesis that (mild) renal impairment and its
systemic consequences adversely impact the coronary microvas-
culature, modifying the pathophysiology, course, and prognosis
of HFpEF. To test our hypothesis, we will conduct a systematic
assessment of circulating renal drivers of HFpEF onset, and pro-
gression and prognosis, and perform basic fundamental studies
to determine the underlying mechanisms and cause–effect rela-
tionships, allowing identification of (early) prognostic markers and
unique targets for therapeutic intervention within this project.
Using well-characterized HFpEF patient cohorts, systemic circu-
lating factors that drive CKD-induced HFpEF onset and progres-
sion will be studied. Specific mechanistic pathways will be exam-
ined using ex vivo bioassays to assess patient material and in vivo
small and large animals. The most promising therapeutic targets
will consequently be tested in newly developed animal models of ..
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. CKD-induced HFpEF, and this will hopefully lead to the develop-

ment of clinical intervention strategies.

Future perspective
A greater understanding of the renal connection in HFpEF may
have multiple consequences. First, new early risk markers may be
identified. For example, elevated levels of FGF23 in CKD patients
might prove to be indicative of new-onset HFpEF. Similarly, mark-
ers of (systemic) fibrosis such as elevated levels of galectin-3 might
identify patients at risk of either CKD, HFpEF, or both. Second,
renal drivers of HFpEF progression are possibly new valuable prog-
nostic factors. Third, new unique targets for intervention can be
identified. Endothelial dysfunction might be a potential target for
therapy, by activating the cGMP pathway through compounds such
as NO donors, guanylyl activators and stimulators, or phosphodi-
esterase 9A inhibitors. Borlaug et al. recently showed that sodium
nitrite infusion improves haemodynamics such as cardiac output
reserve and stroke volume during exercise in HFpEF patients.107

Inorganic nitrite may therefore prove to be a beneficial therapy in
both HFpEF and CKD as inorganic nitrites improve NO–cGMP
signaling. Organic nitrates, on the other hand, have been shown to
worsen endothelial function and increase oxidative stress.108 Treat-
ment of HFpEF patients with organic nitrates showed no beneficial
effect on the daily activity level.109 Of note, the role of synde-
can might be of interest, as syndecan is shed in plasma when the
endothelial glycocalyx is disrupted.110 Data on other methods to
assess endothelial integrity, such as dark field imaging (videomi-
croscopy), are scarce. In addition, uraemic toxins can be reduced
by dietary interventions, or by treatment with the oral sorbent
AST-120.111 Similarly, calcium/phosphate imbalance can be treated
by reducing phosphate intake or using phosphate binders. Finally,
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early intervention in renal pathways that are involved in progres-
sion of asymptomatic LV impairment may ultimately enable us to
prevent the onset or progression of HFpEF.

Conclusions
Renal dysfunction and HFpEF often co-exist and might be bidirec-
tionally causative. In other words, renal dysfunction might cause the
onset or progression of HFpEF, and HFpEF might aggravate renal
dysfunction. The endothelium and a proinflammatory state have
emerged as important mediators in this bidirectional relationship.
Renal impairment leads to metabolic and systemic abnormalities
in circulating factors, causing an activated systemic inflammatory
state and subsequent microvascular dysfunction, which may lead
to cardiomyocyte stiffening, hypertrophy, and interstitial fibrosis
via cross-talk between the microvascular and cardiomyocyte com-
partments. Greater insight into the renal connection in HFpEF will
allow identification of new early risk markers, prognostic factors,
and possibly unique targets for intervention.
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