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Abstract
Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the lead-

ing cause of death over the world. Advances in medical imaging techniques make the quanti-

tative assessment of both the anatomy and function of heart possible. The cardiac modeling

is an invariable prerequisite for quantitative analysis. In this study, a novel method is pro-

posed to reconstruct the left cardiac structure frommulti-planed cardiac magnetic resonance

(CMR) images and contours. Routine CMR examination was performed to acquire both long

axis and short axis images. Trained technologists delineated the endocardial contours. Multi-

ple sets of two dimensional contours were projected into the three dimensional patient-

based coordinate system and registered to each other. The union of the registered point sets

was applied a variational surface reconstruction algorithm based on Delaunay triangulation

and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantita-

tive evaluation on our method was performed via computing the overlapping ratio between

the reconstructed model and the manually delineated long axis contours, which validates our

method. We envisage that this method could be used by radiographers and cardiologists to

diagnose and assess cardiac function in patients with diverse heart diseases.

Introduction
Cardiovascular Disease (CVD), the leading cause of death all over the world, accounts for 17%
of overall deaths in the USA. CVD claims more lives than the combination of the next seven
leading causes of death. Modern diagnosis and treatment of CVD strongly depend on the aid
of medical imaging tools. Numerous advances in medical imaging techniques such as com-
puted tomography (CT) and cardiovascular magnetic resonance imaging (CMR or cardiac
MRI) greatly help clinicians to acquire both morphological and functional information regard-
ing the heart.

Visual assessment based on experience used to be clinicians’ primary method to diagnosis
medical conditions. High intra-/inter-observer variability of visual assessment made clinicians
search quantitative methods with high repeatability and reproducibility. Any such quantitative
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method has an invariable prerequisite, i.e., an accurate computational cardiac model, the study
of which has started since the introduction of the imaging modalities. [1] surveyed the litera-
ture of modeling techniques from a variety of imaging modalities.

Most studies of cardiac modeling were focused on the left ventricle (LV). This exclusive
preference was due to the physiopathological significance of LV. Early approaches [2] used ide-
alized ellipsoidal shapes and variations [3] to modeling the LV. Those compromise methods
were practical in the past, however they are quite oversimplified given nowadays advanced
imaging techniques and numerical methods. Similar recent approaches [4–7] used more
sophisticated superquadric shapes with more control points to replace the simple ellipsoidal
shapes. Images were fitted to determine the shape parameters. The accuracy of results based on
the pre-assumption may be limited when handling the highly variable subjects. A few recent
approaches [8–11] used image data to fit a population-based (statistical) model, which also suf-
fer from the above limitations.

Besides, most reconstructed models are not complete LV models. The basal short axis imag-
ing plane was usually considered as the top of LV models. Two significant parts in the anatomic
definition of LV, i.e., the atrioventricular junction (LV inflow tract) and the aorto-ventricular
junction (LV outflow tract), are not included in the reconstructed models. However, modern
analysis tools such as finite element methods and hemodynamic simulation requires a com-
plete LV model for computation [12–18]. Two junctions are especially significant for the
assessment precision considering the influence from mitral valve and aorta valve to the hemo-
dynamic simulation.

Only a few studies addressed the LV inflow or outflow tract as well as the other chambers and
vessels in the last decades. Four-chamber model was reconstructed in [9, 19, 20] and a model
containing more components such as coronary arteries was established in [10]. As comprehen-
sive as they are, these models have two limitations. Firstly, some of them are population-based
(statistical) model. To adapt them to patient-specific modeling methods is not a trivial task. Sec-
ondly, the imaging modalities in both studies were 3D CT or high resolution MR or Diffusion
Tensor MR providing a fair image resolution and 3D isotropy. However, CMR is considered as
the gold-standard for assessing cardiac anatomy and function due to its ability to capture multi-
frames images throughout the cardiac cycle and widely used in current clinical practice.

The major difficulties of the whole left heart modeling based on CMR include the large
imaging slice spacing, relating three dimensional anisotropy, and the uncertainty of morpholo-
gies of two junction orifices. Researchers in numerical engineering proposed various methods
to reconstruct models from contours, which generally use triangulation and meshing technique
to determine connections in between neighboring contours [21–25], which however suffer
from the inevitable heuristics due to the topology variations or contours sparseness. The
demand of a robust and precise reconstruction method motivates this study.

In this study, a novel method is proposed to address the left cardiac modeling problem from
a variational approach. Contours were delineated to indicate LV, LA, and AO in both short
and long axis images. Contours from different images were registered in the patient-based
coordinate system. After a series of preprocessing including contour matching and interpola-
tion, a variational surface reconstruction method was applied. Delaunay based tetrahedral
meshes were generated to discretize the underlying space. Graph-cuts were applied to solve the
variational problem. The surface model containing the LV, LA, and AO was then extracted
from the tetrahedral mesh according to the min-cut. The intersection of the reconstructed sur-
face with the long axis imaging plane was validated against to the manually delineated contours
using both curve-based and region-based criteria.

The remainder of this article is organized as follows. Section 2 describes the methodology.
Section 3 provides the experimental results and the validation. Section 4 concludes this article.
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Methods
In this study, we tested algorithm on ten healthy volunteers. This study was approved by the
Singhealth Centralised Institutional Review Board (CIRB No: 2009/705/C) for human research.
All enrolled participants gave written informed consent. The MR data are deposited in hospital
and are available for research and education purpose. Cardiac relating measurements for each
volunteer/patient were given in Table 1.

Image Acquisition and Contour Delineation
A 1.5T Siemens scanner with ECG gating was utilized to acquire the cine MR images. Both
long axis and short axis images were acquired. A parallel stack of short axis images was
acquired from the left atrium to left ventricle apex (8mm inter-slice thickness with no inter-
slice gap). Three long axis images were acquired orthogonal to the short axis images, i.e., two
chamber view, three chamber view, and four chamber view. The TR/TE/flip angle is typically
68ms/1ms/70°. The field of view was typically 320 mm with spatial resolution of less than 1.5
mm (typically 1.43 mm). Each slice was acquired in a single breath hold, with 22 temporal
frames per cardiac cycle.

Both long axis and short-axis MR images were processed in the CMRtools suite (Cardiovas-
cular Solution, UK). Endocardium was delineated by experts for the end-diastole (ED) and
end-systole (ES) of each image slice.

For the two chamber view, the LV and LA were delineated; for the three chamber view, the
LV, LA, and AO were delineated; for the four chamber view, the LV and LA were delineated.
Examples of such long axis images and delineations are shown in Fig 1. Identification of the
boundaries of LA inflow tract and AO outflow tract could be of less significance. Since the sub-
sequent registration and surface reconstruction procedure would use little information from
those.

For short axis images containing only left ventricle, left ventricle endocardium was delin-
eated, see Fig 2(a) and 2(d); for short axis images containing both left atrium and aorta, which
could be visibly distinguished, left atrium endocardium and aorta were delineated separately as
two disconnected contours, see Fig 2(c) and 2(f); for short axis images containing the LV inflow
and outflow tract, i.e., the left atrio-ventricular junction and the aortic-ventricular junction,
where the interface between inflow and outflow tracts was not clear, a large contour containing
them all was delineated, see Fig 2(b) and 2(e). All papillary muscles were excluded from the
myocardial region and were considered as the blood pool instead.

Table 1. Statistics on Volunteers.

Volunteer height (m) weight (kg) BSA (m2) LV mass (g) RR (ms) SBP (mmHg) DBP (mmHg)

1 1.71 68.2 1.8 102 745 115 63

2 1.8 97.5 2.2 125 1005 123 72

3 1.66 78 1.9 115 780 136 79

4 1.56 59.2 1.6 78 765 111 60

5 1.53 46.5 1.4 66 830 110 67

6 1.47 47.1 1.4 85 880 117 75

7 1.62 66 1.7 120 1085 126 78

8 1.47 55 1.5 67 860 92 55

9 1.6 49.8 1.5 82 1000 100 63

10 1.74 77.7 1.9 105 985 128 77

Average 1.616 64.5 1.69 94.5 893.5 115.8 68.9

doi:10.1371/journal.pone.0145570.t001
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Fig 1. Long axis images and delineated contours.

doi:10.1371/journal.pone.0145570.g001

Fig 2. Short axis images and delineated contours.

doi:10.1371/journal.pone.0145570.g002
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Point Cloud Registration
The contours delineated from all images were projected into one three dimensional space, i.e.,
the patient-based coordinate system, according to the imaging specification, e.g., the pixel spac-
ing, the image position, and the image orientation. These image specification are contained in
the DICOM file meta information, and the transformation from 2D planar contours to 3D
point clouds is as follows.
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where

(u, v) is the 2D coordinate,

(x, y, z) is the transformed 3D coordinate,

(Px, Py, Pz) is the image position (cf. DICOM attribute (0020,0032)),

(Ux, y, z, Vx, y, z) is the image orientation (cf. DICOM attribute (0020,0037)),

and (4u,4v) is the pixel spacing (cf. DICOM attribute (0028,0030)).

Fig 3 illustrates points from contours of all images constituting the point cloud, which
approximately profiles the whole left heart structure.

• Csax: the set including all contours on parallel short axis images.

• C2ch: the set from the contour on the two chamber left view image.

• C3ch: the set from the contour on the three chamber view image.

• C4ch: the set from the contour on the four chamber view image.

Simply collecting all contour points for reconstruction is by no means a robust method, con-
sidering the breath hold motion and other movements. Certain registration measures must be
done before incorporating all contours from different imaging planes.

Recently, the registration methods addressing the misalignment problem could be catego-
rized into two groups. One group of approaches is image-based approaches [26]. The other is
geometry-based approaches [27–29]. The image-based approaches are inherently inaccurate
due to the large slice spacing and the complex nature of images such as the inhomogeneity and
non-uniformity as well as the existence of papillary muscles. Hence, we choose the geometry-
based registration method in this stage.

Iterative Closest Point (ICP) algorithm proposed by Besl and McKay [30] and its variations
are widely used to register two sets of points, which partially overlap and are usually sampled
from one surface.

Directly applying the point cloud registration method to a pair of point clouds may cause
artifact registering configuration due to the different data characteristics. Most point cloud reg-
istration algortithms were designed for two clouds with relatively dense overlappings, which
was not true in our situation. To tackle this issue, we modified the algorithm. Instead of using
the whole point clouds, we compute a subset for each point cloud for registration.

The subset filtering criteria are based on the distance between two point clouds.

Variational Reconstruction of Left Cardiac Structure from CMR Images
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Fig 3. Point cloud from all contours.

doi:10.1371/journal.pone.0145570.g003
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Let CX and CY be two point clouds, which have limited overlapping part.

C
0
X ¼ fxjdðx;C0

YÞ � �; x 2 CXg
C

0
Y ¼ fyjdðy;C0

XÞ � �; y 2 CYg

The resulting C
0
X and C

0
Y have the following properties:

1. dHðC 0
X ;C

0
Y Þ � �, where dH(�,�) is the Haursdorf distance of two sets.

2. If �� dH(CX, CY), then C
0
X ¼ CX ;C

0
Y ¼ CY .

3. If �1 � �2, then the resulting C
0
X1 � C

0
X2.

From Property 2 and 3, the relationship between a proper � and the Haursdorf distance
between the originial two point clouds is implied. Larger � generates larger subsets. Hence, in
our experiment, we use � = αdH(CX, CY),0.2� α� 0.5. The empirical α is used for the cases
when the motion is not significant. The adaptive setting of the α parameter taking into account

of the initial position of two point clouds is still in study. The algorithm to compute C
0
X and C

0
Y

is described in Table 2.

After computing of such subsets C
0
X and C

0
Y , the classic ICP was applied to them. Assume C

0
X

is fixed as the reference, the registration configuration could be obtained then: translation v,

and rotation R. The registered subset C
0
Y could be represented as T v;RðC0

YÞ.
For the four obtained point clouds, i.e., Csax, C2ch, C3ch, and C4ch, the above registration was

performed between three pairs among them, namely {Csax, C2ch}, {Csax, C3ch}, and {Csax, C4ch}.

Csax was used for reference in each registration procedure. Note that the selected subset C
0
sax for

Csax could be different for different procedure.
Three registration configuration were obtained then: (v2, R2) for {Csax, C2ch}, (v3, R3) for

{Csax, C3ch}, and (v4, R4) for {Csax, C4ch}. This registration parameters was defined in earlier
study. Briefly, R is the rotation matrix and v is the translate vector. The registration configura-
tions were applied on each long axis point set respectively, obtaining C0

2ch, C
0
3ch, and C

0
4ch, see Fig

4, where three pairs of registrations are shown respectively as well as a zoomed view.

Table 2. Subset computation for two point clouds.

Inputs

1. Two point clouds CX, CY

2. Neighborhood parameter �

Algorithm

1. C0
X ¼ CX

2. C0
Y ¼ CY

3. While(1)

4. Find the subset OX ¼ fx jdðx;C0
YÞ > �g

5. Find the subset OY ¼ fy jdðy;C0
XÞ > �g

6. Update C0
X ¼ C0

X �OX

7. Update C0
Y ¼ C0

Y �OY

8. If |OX|+|OY| = 0 %%|.| is the cardinality of a set.

9. Terminate

10. End If

11. End While

Outputs Two subsets C0
X , C

0
Y

doi:10.1371/journal.pone.0145570.t002
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Variational Surface Reconstruction
The registered point clouds from long/short axis images were then utilized to reconstruct an
endocardial surface of the left heart. The reconstruction task consisted of three steps: (a) inter-
polation between parallel contour points; (b) tetrahedral mesh generation; (c) variational mesh
segmentation and surface extraction.

Interpolation between Parallel Contour Points. Short axis contours Csax were identified
as LV, LA, and AO contours CLV, CLA, CAO. The interpolation between parallel contours, i.e.,
short axis contours, was conducted in each contour group, respectively. The region of the left
ventricular inflow tract and outflow tract, i.e., the bifurcation portion, was not interpolated due
to the uncertainty of the correspondence between contour points.

The interpolation of contours in each contour group includes (a) contour re-orientation; (b)
intra-contour interpolation; (c) contour matching; (d) inter-contour interpolation.

(a). The re-orientation step was adopted to ensure that all contours to be interpolated were
counter-clockwise. This could be accomplished by a number of methods. In our

Fig 4. Registration for three pairs,Csax is in green, originalC2ch,3ch,4ch are in blue, registered
C2ch,3ch,4ch are in red.

doi:10.1371/journal.pone.0145570.g004
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approach, we adjusted all contours to be counter-clockwise by making their signed areas
to be positive.

(b). The intra-contour interpolation was conducted to make all contours contain the same
number of contour points. The interpolation method was chosen as piecewise cubic Her-
mite interpolating polynomial (PCHIP). Considering the fact that the contours of LV,

LA, or AO are nearly circular shapes, smoother interpolation results with C2 from a more
computationally expensive interpolation method such as cubic spline could not produce
a significantly different result compared with PCHIP method.

(c). Contour matching was applied to establish the point-to-point correspondence between
two neighboring contours. To obtain a reasonable and most likely correct correspon-
dence between points of two contours, one contour was used as the reference contour
and a circular shift was applied on the other one such that the mean of the point-wise dis-
tance between two contours was minimized. After the contour matching was applied to
all neighboring contours sequentially, all contours in a group (LV, LA, or AO) were refor-
mulated as the format in Table 3.
In Table 3, C1, C2, . . ., CL are referred as the L parallel contours in a contour group. Each
contour contains the same number of contour points, i.e., {Ci1, Ci2, � � �, CiN}. Point corre-
spondence was established in each column, i.e., contour points with the same second sub-
script {C1j, C2j, � � �, CLj}.

(d). Using the “vertical” correspondence shown in Table 3, inter-contour interpolation was
then conducted in each vertical corresponded point set, i.e., {C1j, C2j, � � �, CLj}. The interpo-
lation method was also chosen as PCHIP method. After this inter-contour interpolation,
the contour point matrix in Table 3 was enlarged from L × N toM × N, whereM> N.

Note that the intra-/inter-contour interpolation size, i.e.,M and N was determined by the
size/density of the tetrahedral mesh generated in the next step. Too largeM and N could pro-
duce an almost same result as that of properM and N, while introducing extra computation
load.

The whole interpolation procedure was conducted on each short axis contour group CLV,
CLA, and CAO, obtaining three interpolated and re-formulated point sets C0

LV , C
0
LA, and C

0
AO.

This interpolation step is shown in Fig 5.
Tetrahedral Mesh Generation. The registered long axis contour points and interpolated

short axis contour points form a new point set profiling the whole left cardiac model with a
higher point density: Cnew ¼ C0

LV [ C0
LA [ C0

AO [ C0
2ch [ C0

3ch [ C0
4ch, see Fig 6(a).

The point cloud Cnew was used to generate a Delaunay-based tetrahedral mesh underlying
the region of interest. Auxiliary grid points Q was selected according to the dimensions and the
density of the point cloud Cnew, and also inserted during the mesh generation procedure. Fig 6

Table 3. Re-formulated contour points.

Parallel contours

C1 C11 C12 C13 � � � C1N

C2 C21 C22 C23 � � � C2N

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

CL CL1 CL2 CL3 � � � CLN

doi:10.1371/journal.pone.0145570.t003
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(b) illustrates this preparation for mesh generation, in which the point cloud Cnew is annotated
in red, while the auxiliary point is in bright yellow. The selection of auxiliary grid points was
described in our previous work [31], where the usage of a Delaunay-based mesh was also
justified.

Fig 5. Left: {CLV [ CLA [ CAO}. Right: fC0
LV [ C0

LA [ C0
AOg. Interpolation was conducted in each short axis

group separately. Notice that the region in between groups is not interpolated.

doi:10.1371/journal.pone.0145570.g005

Fig 6. Mesh Generation Preparation. The auxiliary grid points were selected according to the dimensions
and the density of the point cloud obtained from interpolation step. Cnew andQ was used together in the mesh
generation.

doi:10.1371/journal.pone.0145570.g006
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Variational Mesh Segmentation and Surface Extraction. To reconstruct a triangular
mesh surface from the tetrahedral mesh is equivalent to segmenting the tetrahedral mesh into
two partitions, interior and exterior. Such task could be addressed as a variational problem, i.e.,
the weighted minimal surface energy [32].

EðSÞ ¼
Z
O

dðx;CnewÞdx; ð2Þ

where d(x, Cnew) = miny 2 Cnew
d(x, y), d(x, y) is the Euclidean distance between x and y. The sur-

face Sminimizing this energy functional is the reconstructed surface.
After discretizing this energy functional on the underlying mesh space, it was noted that

this minimization problem could be solved by graph-cuts technique [33], i.e., max-flow/min-
cut algorithm. In other words, this energy is graph-representable. Solving this problem via
graph-cuts has some more technical details to concern, such as determining the solution space
and establishing a proper boundary condition for the solver. The operation procedure was also
described in our previous study. In this section, we illustrate these steps in Fig 7. Applying the
graph-cuts on the problem, a min-cut was then obtained efficiently. A triangular surface mesh
was then extracted from the tetrahedral mesh according to the min-cut. After certain post-pro-
cessing such as smoothing [34] and remeshing [35], a processed left cardiac surface was
obtained and an example is shown in Fig 8.

Results
The present method was applied on data from ten volunteers. Cardiac relating measurements
for each volunteer were give in Table 1. The average time to reconstruct the left cardiac model
for one frame is around 6 seconds on a 2.5GHz CPU Desktop. ED and ES frames were recon-
structed for each case. The reconstructed surface model of Volunteer 1, ED frame was shown
in Fig 8. All ten reconstructed models were shown in Fig 9.

The gold standard to reconstruct the left cardiac model fromMRI is not easily accessible.
Commercial softwares such as CMRTools usually reconstruct the sole LV model, which is rela-
tively trivial task. Alternatively we use the accurate manually delineated contours to validate
the reconstructed model. Since contours were extracted from two-dimensional imaging planes,
we projected the reconstructed model to the corresponding planes to produce the sectional

Fig 7. Variational Surface Reconstruction Steps.

doi:10.1371/journal.pone.0145570.g007
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contours. Both short and long axis contours should have been used for validation. Since the
point cloud contains much more short axis contours than the long axis contours, and interpo-
lation was performed in between short axis contours, the validation result between short axis
contours and reconstructed models are extremely good, almost coinciding with each other.
Hence, we choose the long axis contours as the validation references, which could evaluate the
method more critically.

The overlapping ratio between the reconstructed model and long axis contours was used to
evaluate the reliability and accuracy of the reconstruction method. The overlapping ratio is
widely used in evaluating the performance of segmentation methods. In our study, the recon-
struction task could be thought of as segmenting the left cardiac endocardial cavity in a highly
anisotropic 3D image (slice spacing up to 8mm). The long axis contours could serve as the
ground truth, against which the reconstruction results could be compared with.

In the experiments, the intersection of the reconstructed surface model and the long axis
imaging planes were computed and validated against the contours drawn by experts in the
beginning of the experiments, see Fig 1. This step could be illustrated in Fig 10.

Fig 8. Reconstructed Surface Model of Volunteer 1.

doi:10.1371/journal.pone.0145570.g008

Fig 9. Reconstructed Surface Model of All Volunteers.

doi:10.1371/journal.pone.0145570.g009
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Three criteria were utilized in the evaluation, i.e., Hausdorff distance, Dice similarity Coeffi-
cient, Jaccard similarity coefficient. Hausdorff distance is a curve-based coefficient to measure
the furthest displacement from the reconstructed model to the ground truth contour.

dHðX;YÞ ¼ inf f� � 0 ; X � Y� and Y � X�g ð3Þ

Meanwhile, the Dice and Jaccard similarity coefficients are region-based measurements of
the overlapping ratio between the reconstructed model and the ground truth contour. The
Dice (D) and Jaccard (J) coefficients are defined as follows.

D ¼ 2 � AreaðRe \ TrÞ
AreaðReÞ þ AreaðTrÞ ð4Þ

J ¼ AreaðRe \ TrÞ
AreaðRe [ TrÞ ð5Þ

where Re and Tr are areas bounded by the reconstructed model and the manual delineated

Fig 10. Validation Method: projections of the reconstructedmodel onto the long axis imaging planes were validated against manually delineated
contours.

doi:10.1371/journal.pone.0145570.g010
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contour, respectively. A value of 0.7 and above is considered an adequate overlap. An example
of the validation against two chamber view long axis contour is shown in Fig 11.

The statistics are given in Table 4 for the validation results of all ten volunteers. The average
of all cases are 8.17 for Hausdorff distance, 0.96 for Dice coefficients, and 0.92 for Jaccard coef-
ficients. These results validate our method as a reliable and accurate reconstruction tool.

This validation was not performed for the reconstructed model from un-registered point
clouds (skipping the step in Section 2.2) to evaluate the impact of the registration on the accu-
racy. The registration step was designed to correct the motion relating to the breath hold. For
the ten healthy volunteers in this study, the motions were relatively subtle. The impact of the
registration step is not obvious in this study. In our earlier study, we have encountered data
with large distortion from breath hold motions, which critically undermined the accuracy of
function assessment. We proposed the method to recover the distorted shape in [29]. The reg-
istration step in this article could eliminate this distortion before shape modeling. We will vali-
date this in future works.

Implication: Comprehensive reconstruction of left cardiac structure from CMR images
holds several potential implications in heart modelling and function assessment. First, the

Fig 11. Validation Method. Left: Reconstruction result in green and ground truth contour in red; Middle: Hausdorff Distance between result in green and
ground truth in red; Right: Areas bounded by result and ground truth, i.e., Re and Tr used in Eqs (4) and (5).

doi:10.1371/journal.pone.0145570.g011

Table 4. The average validation indices for ten volunteers. H: Hausdorff distance; D:Dice similarity coefficients; J: Jaccard similarity coefficients.

Volunteer two chamber view three chamber view four chamber view

H(mm) D J H(mm) D J H(mm) D J

1 4.00 0.91 0.83 10.57 0.92 0.84 6.62 0.94 0.89

2 9.59 0.93 0.86 6.24 0.93 0.87 11.99 0.93 0.88

3 3.83 0.93 0.87 4.45 0.98 0.97 5.37 0.98 0.96

4 1.49 0.97 0.94 10.84 0.98 0.97 9.02 0.96 0.93

5 6.26 0.97 0.93 8.16 0.99 0.97 5.51 0.95 0.90

6 6.75 0.95 0.91 16.12 0.97 0.95 8.56 0.97 0.93

7 5.11 0.97 0.94 11.71 0.98 0.96 6.13 0.98 0.95

8 13.77 0.92 0.85 9.07 0.96 0.93 10.01 0.95 0.91

9 3.20 0.99 0.97 7.28 0.97 0.94 8.21 0.97 0.95

10 9.47 0.93 0.87 17.32 0.96 0.91 8.44 0.98 0.95

doi:10.1371/journal.pone.0145570.t004
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comprehensive reconstruction of left cardiac structure including left ventricle, left atrium and
aorta will straightforward facilitate the downstream heart flow simulation, as reported in our
previous publication [12–18]. Second, the reconstruction of left cardiac structure will facilitate
rapid automated numerical characterization of point heart surface curvedness and thereby
point function spatial-temporal fluctuations of curvedness reflect local heart muscle contrac-
tion, allowing comprehensive annotation of regional and global cardiac left ventricular struc-
ture and function [36–39] and aorto-ventricular matching before and after heart surgery [40].
Last, this method will contribute a sizeable contemporary CMR imaging atlas of left heart mor-
phology and function in normal subjects and diverse diseased hearts in the near future [41].
These models from CMR images will also be used to validate LV three dimensional echocardi-
ography measurements (i.e., LV volumes and ejection fraction) (3D-echo).

Conclusions
In this study, we proposed a novel method to semi-automatically reconstruct the whole left car-
diac surface model from contours in short and long axis CMR images. Contours from multiple
images were registered to each other in the patient coordinate system. Intra/Inter-contour
interpolations were performed on the parallel short axis contours then. The resulting contour
points were utilized in a variational surface reconstruction via Delaunay triangulation and
graph-cuts. The method was validated via evaluating the overlapping ratio between the recon-
structed model and multiple long axis contours on the corresponding image planes. High over-
lapping ratio indicates a reliable reconstruction of the left cardiac structure.

This validation is an alternative method to evaluate our reconstruction method when the
gold standard of the left cardiac model was not available in our study. More comprehensive val-
idation will be studied in our future works, including validation against the model recon-
structed from CT scanning of the same subjects (which has a higher spatial resolution), and
against various medical measurements such as ejection fraction (EF) from CT or cardiac cathe-
terization, or nuclear imaging, the prerequisite of which is an accurate localization and model-
ling of the mitral valve and aortic valve.
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