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Purpose of review

Hypertension is the most prevalent risk factor in heart failure with preserved ejection fraction (HFpEF) and
plays a key role in the disease. The continued lack of effective therapies to improve outcomes in HFpEF
underscores the knowledge gaps regarding the pathophysiology of HFpEF. This review builds on
fundamental concepts in pressure overload-induced left ventricular modeling, and summarizes recent
knowledge gained regarding the mechanisms underlying the transition from hypertensive heart disease to

HFpEF.

Recent findings

The pathophysiology of hypertensive HFpEF extends beyond the development of left ventricular hypertrophy
and diastolic dysfunction to myocardial contractile dysfunction, beyond left atrial structural dilatation to left
atrial functional decline, beyond macrovascular stiffening to microvascular dysfunction, beyond central
cardiac triggers to systemic endothelial inflammation, beyond fibrosis fo fitin changes, and beyond
collagen deposition to qualitative changes in collagen. The central paradigm involves a systemic
proinflammatory state triggering a downstream cascade of cardiac microvascular endothelial activation,
oxidative stress, and abnormal myocardial cyclic guanosine monophosphate signaling, leading to
microvascular rarefaction, chronic ischemia, fibrosis and progression to HFpEF.

Summary

Recent advances have provided insights info the pathophysiology of HFpEF in hypertension. Such
knowledge provides novel opportunities for therapeutic strategies in the treatment of hypertensive HFpEF.
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INTRODUCTION

Hypertension carries the highest population
attributable risk for heart failure in the general
population [1], and a more than two-fold increased
odds of heart failure with preserved ejection fraction
(HFpEF) versus heart failure with reduced ejection
fraction (HFrEF) [2]. Among patients with HFpEF,
hypertension is the commonest cardiovascular risk
factor, with a prevalence of 55-84%, which is higher
than in patients with HFTEF [3]. At the onset of heart
failure, a higher SBP increases the odds of HFpEF
versus HFrEF by 13% for each 10-mmHg increase [2].
Individuals with hypertension are therefore at
significantly higher risk of developing HFpEF and
can be classified as having stage A HFpEF according
to American College of Cardiology Foundation/
American Heart Association (ACCF/AHA) stages of
heart failure [4].

The transition from asymptomatic hypertensive
heart disease (Stage B HFpEF) to clinically manifest
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Stage C HFpEF is an area of intense research, as
identifying mechanisms for progression provides
the opportunity to target these mechanisms in
therapeutic or preventive strategies. Greater under-
standing is urgently needed in HFpEF, as it is the
dominant form of heart failure in aging societies [5],
and is associated with dismal outcomes; yet, to date,
there are still no proven effective therapies that
improve survival in HFpEF. The traditional under-
standing of disease progression in hypertension
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KEY POINTS

e Classical understanding of the pathophysiology of
HFpEF in hypertension involves left ventricular
hypertrophy, diastolic dysfunction, left atrial dilatation,
macrovascular stiffening, and myocardial fibrosis.

e Recent findings suggest that beyond these key
mechanisms, left ventricular myocardial contractile
dysfunction, left atrial dysfunction, microvascular
disease, systemic endothelial inflammation, alterations
in titin and qualitative changes in collagen importantly
contribute to the transition of hypertensive heart disease
to HFpEF.

e New insights into the pathophysiology of HFpEF in
hypertension provide potential novel therapeutic
targets, such as the cyclic guanosine monophosphate
signaling pathway.

has been ‘cardiac-centric’ and focused on structural
left ventricular remodeling and the key role of left
ventricular hypertrophy in the pathogenesis of
heart failure [6]. However, fewer than half of
patients with HFpEF had left ventricular hypertro-
phy, and this proportion was no greater than in

those with asymptomatic hypertension in a popu-
lation-based study [7]. Recent work has provided
valuable insight into other fundamental mechan-
isms in the progression to HFpEF in hypertension,
involving both central and peripheral factors. This
review aims to summarize the new knowledge
gained in this field, which importantly builds upon,
yet goes beyond, established concepts such as left
ventricular diastolic dysfunction, left atrial dilata-
tion, macrovascular stiffening, and left ventricular
fibrosis. Figure 1 summarizes recent breakthrough
mechanisms underlying the pathophysiology of
HFpEF in hypertension.

BEYOND LEFT VENTRICULAR
HYPERTROPHY AND DIASTOLIC
DYSFUNCTION: MYOCARDIAL
CONTRACTILE DYSFUNCTION DESPITE
PRESERVED LEFT VENTRICULAR EJECTION
FRACTION

Hypertension imposes increased afterload on the
left ventricle via elevated arterial pressure and
total peripheral resistance. The left ventricular wall
thickens in response to pressure overload as a

Beyond left atrial
structural dilatation:
Left atrial dysfunction

Beyond fibrosis: Role

S

of titin

Beyond LV
hypertrophy and
diastolic dysfunction:
Myocardial contractile
dysfunction

Pathophysiology of
HFpEF in hypertension

Beyond central
mechanisms: Systemic
inflammatory
endothelial activation

Beyond macrovascular
stiffening:
Microvascular
dysfunction

Beyond quantity of
collagen: Quality of
collagen deposition

FIGURE 1. Recent breakthrough mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction

(HFpEF) in hypertension. LV, left ventricular.
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compensatory mechanism to minimize wall stress,
and this results in left ventricular hypertrophy [6]
and left ventricular diastolic dysfunction as
evidenced by impaired left ventricular relaxation,
diminished early diastolic filling and left atrial
enlargement [8%]. Left ventricular hypertrophy
and diastolic dysfunction have been identified
as the key myocardial structural and functional
abnormalities induced by hypertension, leading to
hypertensive heart disease and HFpEF [8",9].

In spite of preserved left ventricular ejection
fraction (LVEF) in HFpEF, patients with HFpEF have
subtle systolic dysfunction not reflected by the ejec-
tion fraction [8%,10]. Left ventricular myocardial
contractility, measured as midwall fractional short-
ening, was impaired in HFpEF, but enhanced in
people with hypertension compared with nonhy-
pertensive controls, despite similar LVEF [11].
Impaired regional strain, as quantified by speckle
tracking echocardiography, was reported in both
hypertensive heart disease [12] and HFpEF patients
[13%]. In addition, Rosen et al. demonstrated that in
asymptomatic patients, left ventricular concentric
remodeling was associated with decreased regional
systolic function on myocardial tagged MRI [14]. In
aggregate, these data provide strong evidence
of myocardial contractile dysfunction in HFpEF
despite preserved overall chamber function, and
suggest a role of progressive systolic dysfunction,
on top of diastolic dysfunction, in the transition
from hypertensive heart disease to overt HFpEF.
Furthermore, myocardial contractile dysfunction
is a prognostic marker in HFpEF patients, correlating
with increased mortality, hospitalization for heart
failure, cardiovascular death or aborted cardiac
arrest [11,13"], thus supporting a pathophysiologic
role in disease progression.

BEYOND LEFT ATRIAL STRUCTURAL
DILATATION: LEFT ATRIAL DYSFUNCTION

Left atrial enlargement reflects cardiac structural
remodeling and is an early sign of hypertensive
heart disease. Left atrial enlargement usually occurs
before left ventricular hypertrophy and is much
more common (up to three-fold) than LVH in hyper-
tensive patients. Hypertensive patients who are
older and have a longer duration of hypertension
are more likely to develop left atrial enlargement
[15]. Left atrial enlargement is present in the
majority of hypertensive patients with HFpEF, and
the prevalence is higher than in hypertensive
patients without HFpEF [15,16]. Melenovsky et al.
showed that left atrial volumes were 68% larger in
HFpEF compared with age-matched controls, and
40% larger in patients with hypertensive heart
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disease without heart failure. In fact, left atrial
volume (along with left ventricular mass) best
distinguished HFpEF from hypertensive heart
disease [16]. Beyond structural changes, left atrial
functional changes are increasingly recognized in
HFpEF. Patients with HFpEF had reduced atrial total,
passive, and active emptying fractions, as well as
reduced atrial contractile reserve in response to
handgrip, compared with controls and hyperten-
sives in Melenovsky’s cohort [16]. Tan et al. also
demonstrated reduced left atrial functional reserve
on treadmill exercise in HFpEF, where late diastolic
mitral annular velocity on exercise was lower in
HFpEF, compared with hypertensive subjects and
healthy controls, and correlated with exercise
capacity [17]. The inability to increase left atrial
contribution to left ventricular filling during exer-
cise was postulated to lead to raised left atrial pres-
sure and breathlessness on exertion in HFpEF. More
recently, increased left atrial stiffening and greater
left atrial pressure pulsatility was shown in HFpEF
compared with hypertensive controls and patients
with HFrEF [18"]. A substudy of HFpEF patients from
the angiotensin receptor neprilysin inhibitor
LCZ696 in heart failure with preserved ejection
fraction (PARAMOUNT) trial further reported worse
left atrial reservoir, conduit, and pump function, as
well as reduced systolic left atrial strain compared
with age- and sex-matched healthy controls [19].
Importantly, left atrial dysfunction is a potent
prognostic factor in hypertensive patients [207]
and patients with HFpEF [20%21], independently
of left atrial structural remodeling. The ultimate
expression of left atrial dysfunction may be the
development of atrial fibrillation. Indeed, recent
longitudinal epidemiologic studies have high-
lighted the intimate relationship between HFpEF
and atrial fibrillation, where one condition begets
the other, and atrial fibrillation was found to occur
in more than 60% of patients with HFpEF during the
course of their disease [227]. In fact, compared with
HFrEF, patients with HFpEF were more likely to have
prevalent atrial fibrillation (23% versus 32%); con-
versely, prevalent atrial fibrillation tended to predict
incident HFpEF [hazard ratio (HR): 2.34, 95% con-
fidence interval (CI): 1.48-3.70, no atrial fibrillation
as referent] more strongly than HFrEF (HR 1.32, 95%
CI: 0.83-2.10; P for difference 0.06) [22].

BEYOND MACROVASCULAR STIFFENING:
MICROVASCULAR DYSFUNCTION
Macrovascular stiffening is present in patients
with hypertension and HFpEF, associated with
matched increases in left ventricular systolic stiffness
(elastance) so as to preserve arterial-left ventricular
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coupling for maximal cardiac efficiency [16,23].
However, during exercise there was blunted increase
in left ventricular contractility and blunted vasodi-
lation in HFpEF, resulting in abnormal arterial-LV
coupling reserve and exertional intolerance [24].
Apart from macrovascular stiffening, microvascular
dysfunction has been demonstrated in HFpEF, as
evidenced by lower resting endothelial-related
microvascular vasomotion by laser Doppler flowme-
try, and impaired reactive hyperemia (reduced slope
of the rise in forearm cutaneous blood flow and
decreased forearm cutaneous peak blood flow after
release of arterial occlusion), compared with hyper-
tensive control subjects matched for age, sex, and
diabetes [25™]. Lee et al. recently reported reduced
brachial flow-mediated dilatation (FMD) and reactive
hyperemia in HFpEF compared with healthy
controls, indicating the presence of both macrovas-
cular and microvascular endothelial dysfunction
in HFpEF. Importantly, when brachial FMD was
normalized for hyperemia-induced shear stimulus
(as the shear stimulus is a measure of microvascular
function), there was no significant difference in FMD
between HFpEF and controls, indicating that the
macrovascular dysfunction was, at least in part, con-
tributed by microvascular dysfunction [26%]. Micro-
vascular dysfunction may result in impaired stress-
induced myocardial perfusion, leading to myocardial
ischemia, microvascular infarction, rarefaction, and
fibrosis with ensuing HFpEF [27]. Mohammed et al.
[28"] provided valuable insights from human myo-
cardial autopsy samples showing that patients with
HFpEF had more coronary microvascular rarefaction
and myocardial fibrosis than in controls. Microvas-
cular rarefaction was postulated to play a role in
limiting systolic and diastolic reserve, predisposing
to chronic microvascular ischemia, fibrosis, and pro-
gression to HFpEF. In fact, evidence has very recently
emerged to show that microvascular ischemia results
in abnormal diastolic reserve during exertion in
HFpEF [29]. This was demonstrated by higher peak
exercise pulmonary capillary wedge pressure despite
alower workload and significantly lower transcardiac
oxygen gradient in HFpEF compared with controls
and hypertensive patients without heart failure. The
difference in the response between the hypertensive
patients and the HFpEF patients suggests that micro-
vascularischemia might play a role in the progression
to Stage C HFpEF.

BEYOND CENTRAL MECHANISMS:
SYSTEMIC INFLAMMATORY
ENDOTHELIAL ACTIVATION

In the landmark paper by Paulus and Tschope,
attention was turned from a cardiac-centric trigger
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(such as acute myocardial infarction in HFrEF) to
a systemic trigger in HFpEF, where a widespread
proinflammatory state secondary to comorbidities
was responsible for a cascade of events resulting
in left ventricular diastolic dysfunction and HFpEF
[30]. According to this paradigm, common comor-
bidities in HFpEF, such as hypertension, obesity, and
diabetes mellitus, trigger systemic inflammation,
including coronary microvascular endothelial
inflammation. Coronary microvascular endothelial
inflammation, in turn, decreases the bioavailability
of nitric oxide and cyclic guanosine monophos-
phate (cGMP) content, resulting in decreased
protein kinase G (PKG) activity in cardiomyocytes.
The low PKG activity leads to cardiomyocyte hyper-
trophy, concentric left ventricular remodeling,
hypophosphorylation of the giant cytoskeletal
protein titin, and increased myocardial stiffness.
Further evidence in support of this paradigm
was recently provided by Frannssen et al., who
looked at myocardial biopsies of HFpEF patients
(compared with patients with aortic stenosis and
HFrEF) in conjunction with findings in obese
diabetic fatty/spontaneously hypertensive HFpEF
rats (compared with control rats) [31]. Firstly, in
the myocardium of HFpEF patients and HFpEF rats,
they found higher levels of vascular adhesion
molecules Intercellular Adhesion Molecule-1 and
E-selectin, which were attributed to the higher
metabolic risk profile, and favored myocardial infil-
tration of inflammatory cells. Secondly, they
showed striking upregulation of NADPH oxidase
expression in endothelial cells of HFpEF patients
and rats but not cardiomyocytes. This is in line with
the hypothesis that endothelial activation is respon-
sible for myocardial remodeling in HFpEF, in
contrast to cardiomyocyte cell death in HFrEF.
Thirdly, in HFpEF patients and HFpEF rats there
was uncoupling of endothelial nitric oxide synthase,
leading to reduced nitric oxide production and
downstream cGMP and PKG effects as described
above and shown in prior work from the group [32].
Interestingly, in the setting of hypertensive heart
disease, it may be that a ‘second hit’ triggers HFpEF;
that is, a concomitant metabolic comorbidity (such
as diabetes mellitus) is superimposed on hyperten-
sion to produce the syndrome of HFpEF. Indeed,
compared with patients with aortic stenosis without
diabetes mellitus, patients with diabetes mellitus
were more likely to have more myocardial fibrosis,
increased advanced glycation end product depo-
sition in the intramyocardial vasculature and higher
cardiomyocyte resting tension [33], resulting in
greater disposition to HFpEF in the diabetic patients.
This suggests that diabetes acted as a metabolic trig-
ger in addition to the pressure overload state to
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produce HFpEF. However, hypertension alone may
also be associated with oxidative stress and inflam-
mation, and very recent evidence suggests that this
predisposition may be related to genetic factors.
Fazakas et al. [34"] showed that the genetic predis-
position to oxidative stress in the setting of hyper-
tension was associated with HFpEF. They determined
a genetic score from the prevalence of six single
nucleotide polymorphisms of genes encoding
enzymes related to various components of oxidative
stress. Using 94 60-year-old or older patients with
hypertension and 18 age-matched controls with nor-
mal ejection fraction, they report that a high genetic
risk score for oxidative stress was significantly associ-
ated with diastolic dysfunction.

BEYOND FIBROSIS: ROLE OF TITIN

Titin is a giant myofilament protein that functions as
a complex spring and is responsible for cardiomyo-
cyte passive tension. Multiple experiments have
shown that other than collagen, titin is also associ-
ated with the myocardial stiffness that is fundamen-
tal in the pathophysiology of HFpEF [35,36].
Importantly, the relative contribution of collagen
versus titin changes was recently correlated to myo-
cardial stifftness measured directly in left ventricular
myocardial strips from patients with HFpEF: Zile et al.
[37""] elegantly demonstrated that both components
are important: collagen accounted for a larger pro-
portion of left ventricular stiffness at longer sarco-
mere lengths, and titin for a larger proportion of left
ventricular stiffness at shorter sarcomere lengths. The
investigators also detailed the type of titin modifi-
cation responsible for increased left ventricular stiff-
ness: titin modifications may include change in the
titin isoform (N2BA versus N2B isoforms) or change
in phosphorylation status at various sites of titin.
Compared with hypertensive patients without heart
failure and controls without hypertension, patients
with hypertensive HFpEF had increased titin phos-
phorylation on a protein kinase C site in the PEVK
element and decreased phosphorylation of a protein
kinase A/protein kinase G site in the N2B element. In
contrast to Van Heerebeek ef al. [32] and Borbely et al.
[38], Zile et al. found no differences in the N2BA/N2B
titin ratio in HFpEF. The varying results were postu-
lated to be related to differences in disease severity,
with more advanced stages of HFpEF included in
the former studies compared with the latter.

BEYOND QUANTITY OF COLLAGEN:
QUALITY OF COLLAGEN DEPOSITION

In the same study, Zile et al. [37%"] also showed that
the increased collagen-dependent stiffness found in
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HFpEF patients correlated with an increase in total
and insoluble collagen in the group, whereas the
soluble collagen levels were similar in all three
groups. Insoluble collagen, but not soluble collagen,
was therefore deemed to be the culprit for myo-
cardial stiffness. These were insoluble fibers with
increased thickness, formed when collagen fibrils
were covalently linked together by the enzyme lysyl
oxidase in the process called collagen cross-linking
(CCL). More recently, Lopez et al. [39%] went on to
show that excessive myocardial CCL, determined
as the ratio between insoluble and soluble collagen
in endomyocardial biopsies of 38 patients with
hypertensive heart failure, was increased in patients
compared with controls, and associated with higher
risk of subsequent hospitalization for heart failure.

CLINICAL IMPLICATIONS

Contemporary guideline recommendations for the
management of HFpEF have been largely confined
to the use of diuretics for symptom relief and treat-
ment of comorbidities [4]. Large phase III HFpEF
clinical trials looking at rennin-angiotensin—
aldosterone system inhibition have failed to dem-
onstrate reduction in cardiovascular events in
HFpEF [40"], and reasons for this have been
discussed in recent reviews [41,42]. New drugs that
may boost myocardial cGMP offer hope [43"], and
include a long-acting phosphodiesterase-5 inhibitor
Udenafil (phase III ULTIMATE-HFpEF Trial; Clini-
calTrials.gov Identifier: NCT01599117), a soluble
guanylate cyclase stimulator Vericiguat (phase
IIb SOCRATES-PRESERVED trial; ClinicalTrials.gov
Identifier: NCT101951638), and an angiotensin
receptor-neprilysin inhibitor LCZ 696 (phase III
PARAGON-heart failure trial; ClinicalTrials.gov
Identifier: NCT01920711). Particularly in the setting
of hypertensive HFpEF, nonpharmacological
interventions deserve mention: in a small study of
13 hypertensive patients with HFpEF, the sodium
restricted Dietary Approaches to Stop Hypertension
diet was associated with favorable changes in left
ventricular diastolic function, arterial elastance, and
ventricular—arterial coupling [44], as well as altered
metabolic profile with improved energy substrate
utilization [45]. A larger randomized controlled
trial, involving 100 obese and predominantly hyper-
tensive older patients with HFpEF, demonstrated
that low calorie diet and aerobic exercise training
improved exercise capacity with increased peak oxy-
gen consumption [46]. The potential mechanisms
underlying the beneficial effects of healthy diet and
exercise in HFpEF may be because of reduced inflam-
mation, enhanced mitochondrial function, attenu-
ated reactive oxygen species generation, increased
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nitric oxide bioavailability, and improved micro-
vascular function [46].

CONCLUSIONS

Hypertension is the commonest risk factor for the
development of HFpEF. Recent work has provided
valuable insights into the mechanisms underlying
the transition from hypertension to HFpEF, showing
that the pathophysiology extends beyond left ven-
tricular hypertrophy and diastolic dystunction to
myocardial contractile dysfunction, beyond left
atrial structural dilatation to left atrial functional
decline, beyond macrovascular stiffening to micro-
vascular dysfunction, beyond central cardiac trig-
gers to systemic endothelial inflammation, beyond
fibrosis to titin changes, and beyond collagen depo-
sition to qualitative changes in collagen. Such
understanding importantly offers new therapeutic
opportunities beyond reduction of blood pressure.
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