Roger Sik Yin FOO

Senior Group Leader


Laboratory of Cardiac Epigenome, Molecular Epigenetics and Stress-gene Response.
Heart failure is a major cause of mortality and morbidity in the world today. Easily rivalling the severity of some forms of cancer, life expectancy for patients with heart failure at 5 years can be as poor as <50%. Novel targets are urgently needed for the heart failure drug discovery pipeline. Moreover, current therapy slows disease progression, but does not reverse the course of disease. Although heart failure can be caused by different originating causes including hypertension, diabetes, myocardial infarction and genetic mutations, it is nonetheless characterised by convergent processes such as fibrosis, angiogenesis and cell death. Similarly a consistent pattern of gene expression constitutes the myocardial genomic stress-response in the progression of heart failure. A hallmark for this myocardial genomic stress-response includes fetal gene reprogramming, upregulation of extracellular matrix genes and others.

The epigenome refers to “marks” on the genome including histone modifications and DNA methylation. Our group published the first evidence that differential DNA methylation exists in end-stage human cardiomyopathic hearts and correlates to changes in specific gene expression. By high-throughput sequencing, we have also published the first glimpse of genome-wide DNA methylation landscapes of the failing human heart. A major effort in the lab now is to deep dive and to establish the role of the cardiac epigenome and chromatin reorganization in heart failure onset and progression. To achieve this, we employ a host of genomic and molecular tools, with tractable in vitro and in vivo experimental models as well as human explant tissue to study the myocardial genomic and epigenomic stress response. Epigenetic tools represent a real potential for finding refreshing molecular therapeutic approaches that work to reverse the course of disease, rather than just slowing down its progression.

The recent large BMRC SPF Cardiovascular Research grant award consists of a Genetics/Epigenetics theme which our group leads. This has the ambitious aim of mapping out functional elements in the cardiac genome and epigenome, opening up a new and important area of cardiovascular research. We hope that all together our work will eventually lead to the identification of novel targets for future heart failure therapy.

In a separate translational programme, our lab was also responsible for establishing Singapore’s first Inherited Cardiac Conditions clinic based at the National University Heart Centre. This clinic makes use of high-throughput sequencing-based genetic test panels developed at the Genome Institute of Singapore.


  • 1. Published the first map of human cardiac epigenome: demonstrating that it differs between healthy and end-stage diseased hearts

    2. Published the first single cell transcriptome landscape of human heart cells

    3. Established Singapore's first Inherited Cardiac Conditions Clinic based at NUH

    4. Lead for Singapore's Rare Undiagnosed Diseases Research programme

    5. Numerous Clinician Scientist awards and fellowships: NMRC CSA (SI), British Heart Foundation and Wellcome Trust

    6. Theme lead for Cardiac Epigenetics and Epigenomics in Singapore's large Cardiovascular programme grants such as the flagship TCR and ATTRACT SPF grants

Main Menu