Senior Group Leader, Computational and Systems Biology
Associate Director, Integrated Genomics


Prabhakar Lab webpage

Transcriptional Regulation
Disease Mechanisms, Therapeutics, Diagnostics, Omics, Algorithms, Data Analysis

The majority of genetic mutations responsible for common diseases reside within gene-regulatory sequences such as enhancers, promoters and insulators. In addition, transcriptional and epigenetic dysregulation are known to drive tumorigenesis, tumor progression and drug resistance. Thus, gene regulation lies at the heart of disease mechanisms and treatment response.

The Prabhakar Lab uses a combination of high-throughput omics assays (wet-lab) and data analytics (dry-lab) to study gene-regulatory mechanisms of human diseases. In particular, we use single-cell RNA-seq, cohort-scale histone ChIP-seq and other NGS technologies to understand autism, psychiatric drug response, lung and colon cancer, chronic myeloid leukemia, autoimmune disorders and host response to infection.

We also develop cutting-edge algorithms and pipelines for deriving biological insights from large datasets. This involves statistics, machine learning and extensive benchmarking for performance and scalability.

In addition to curiosity-driven science, we pursue inventions and discoveries that will (hopefully) make a difference in the world. For example, we are engaged in team science to discover markers of immunotherapy response and develop new imaging-based diagnostic technologies. The methods we develop have spawned research collaborations with multiple industry partners spanning biotech, IT and pharma.

Major achievements include the first single-cell transcriptomic analysis of colorectal tumors (Li, Courtois et al., Nat Genet 2017), the first study of histone acetylation changes in autism spectrum disorder (Sun, Poschmann et al., Cell 2016), the first large-scale study of variants that alter histone acetylation and contribute to disease susceptibility (del Rosario, Poschmann et al., Nat Methods 2015) and the first unified signal-processing method for peak detection in whole-genome profiling data (Kumar et al., Nat Biotechnol 2013). We have also uncovered fundamental properties of transcription factor binding to genomic DNA (Jankowski et al., Genome Res 2013) and demonstrated that H2BK20ac is a distinctive signature of enhancers and cell-type-specific promoters (Kumar, Rayan, Muratani et al., Genome Res 2016). Earlier work explored the contribution of gene regulatory elements to human origins (Prabhakar, Noonan et al., Science 2006; Prabhakar et al., Science 2008).

Citations: Google Scholar

Centre for Big Data and Integrative Genomics (c-BIG)

Histone acetylation changes in autism: Straits Times interview 2016,
Channel News Asia interview 2016
Single cell algorithms, application to colorectal cancer: Labroots webinar 2016
Human Cell Atlas, Asian Immune Diversity Atlas (AIDA): HCA Barcelona 2019, HCA Equity Addis Ababa 2019

Job Openings
Wet-lab PhD students, Postdoctoral Fellows
Computational Biology PhD students, Postdoctoral Fellows 1
Computational Biology PhD students, Postdoctoral Fellows 2
Bioinformatics Specialists


  • 2019 Genome Institute of Singapore Super Team Award (co-leader of Spatial Omics team)

    2018 UBC Science Co-op Employer Recognition Award (as part of a larger team)

    2018 Genome Institute of Singapore Super Team Award (member of SG10K team)

    2008 First prize: poster competition at HUGO 13th Human Genome Meeting

    2001 American Physical Society Award for Outstanding Doctoral Thesis Research in Beam Physics

Main Menu