This article is published on ACS OMEGA 2017.


A new method for producing a dispersed gold nanoparticle (Au NP) array to anchor probe DNAs onto a DNA-sensing electrode has been developed. A homogenous gold sulfide (Au2S) core (precursor of Au NP) was biomineralized in the cavity of a mutant apoferritin (K98E) with enhanced negative outer-surface charges. We employed a slow chemical reaction system utilizing a stable cationic gold complex. K98E could attract the gold complex, and Au2S NPs were synthesized. K98E enabled dispersed placement of the synthesized Au2S core onto a cationic 3-aminopropyltriethoxysilane (APTES) layer on a substrate. UV–ozone treatment eliminated the protein shells and APTES layer. X-ray photoelectron spectroscopy confirmed that the Au2S core was reduced to Au NPs under the same treatment. Atomic force microscopy (AFM) clearly showed that the combination of apoferritin versatility, chemical system design, and UV–ozone treatment successfully produced a dispersed Au NP array on the substrate.

Article link: http://pubs.acs.org/doi/abs/10.1021/acsomega.6b00550

Actions: E-mail | Permalink |